Blog

Einblicke in das SOC-Team

Ransomware

Detecting Unknown Ransomware: A Darktrace Case Study

Standard-BlogbildStandard-BlogbildStandard-BlogbildStandard-BlogbildStandard-BlogbildStandard-Blogbild
24
Aug 2022
24
Aug 2022
Learn how Darktrace uncovered uncategorized ransomware threats in the Summer of 2021 with Darktrace SOC. Stay ahead of cyber threats with Darktrace technology.

Uncategorized attacks happen frequently, with new threat groups and malware continually coming to light. Novel and known threat groups alike are changing their C2 domains, file hashes and other threat infrastructure, allowing them to avoid detection through traditional signature and rule-based techniques. Zero-day exploitation has also become increasingly apparent – a recent Mandiant report revealed that the number of identified zero-days in 2021 had dramatically increased from 2020 (80 vs 32). More specifically, the number of zero-days exploited by ransomware groups was, and continues to be, on an upward trend [1]. This trend appears to have continued into 2022. Given the unknown nature of these attacks, it is challenging to defend against them using traditional signature and rule-based approaches. Only those anomaly-based solutions functioning via deviations from normal behavior in a network, will effectively detect these threats. 

It is particularly important that businesses can quickly identify threats like ransomware before the end-goal of encryption is reached. As the variety of ransomware strains increases, so do the number which are uncategorized. Whilst zero-days have recently been explored in another Darktrace blog, this blog looks at an example of a sophisticated novel ransomware attack that took place during Summer 2021 which Darktrace DETECT/Network detected ahead of it being categorized or found on popular OSINT. This occurred within the network of an East African financial organization.

Figure 1- Timeline of (then-uncategorized) Blackbyte ransom attack 

On the 6th of July 2021, multiple user accounts were brute-forced on an external-facing VPN server via NTLM. Notably this included attempted logins with the generic account ‘Administrator’. Darktrace alerted to this initial bruteforcing activity, however as similar attempts had been made against the server before, it was not treated as a high-priority threat.

Following successful bruteforcing on the VPN, the malicious actor created a new user account which was then added to an administrative group on an Active Directory server. This new user account was subsequently used in an RDP session to an internal Domain Controller. Cyber AI Analyst picked up on the unusual nature of these administrative connections in comparison to normal activity for these devices and alerted on it (Figure 2).

Figure 2: AI Analyst detected the suspicious nature of the initial lateral movement. RDP, DCE-RPC, and SMB connections were seen from the VPN server to the domain controller using the newly created account. Note: this screenshot is from DETECT/Network v.5

Less than 20 minutes later, significant reconnaissance began on the domain controller with the new credential. This involved SMB enumeration with various file shares accessed including sensitive files such as the Security Account Manager (samr). This was followed by a two-day period of downtime where the threat actor laid low. 

On the 8th of July, suspicious network behavior resumed – the default Administrator credential seen previously was also used on a second internal domain controller. Connections to a rare external IP were made by this device a few hours later. OSINT at the time suggested these connections may have been related to the use of penetration testing tools, in particular the tool Process Hacker [2].

Over the next two days reconnaissance and lateral movement activities occurred on a wider scale, originating from multiple network devices. A wide variety of techniques were used during this period: 

·      Exploitation of legitimate administrative services such as PsExec for remote command execution.

·      Taking advantage of legacy protocols still in use on the network like SMB version 1.

·      Bruteforcing login attempts via Kerberos.

·      The use of other penetration testing tools including Metasploit and Nmap. These were intended to probe for vulnerabilities.

On the 10th of July, ransomware was deployed. File encryption occurred, with the extension ‘.blackbyte’ being appended to multiple files. At the time there were no OSINT references to this file extension or ransomware type, therefore any signature-based solution would have struggled to detect it. It is now apparent that BlackByte ransomware had only appeared a few weeks earlier and,  since then, the Ransomware-as-a-Service group has been attacking businesses and critical infrastructure worldwide [3]. A year later they still pose an active threat.

The use of living-off-the-land techniques, popular penetration testing tools, and a novel strain of ransomware meant the attackers were able to move through the environment without giving away their presence through known malware-signatures. Although a traditional security solution would identify some of these actions, it would struggle to link these separate activities. The lack of attribution, however, had no bearing on Darktrace’s ability to detect the unusual behavior with its anomaly-based methods. 

While this customer had RESPOND enabled at the time of this attack, its manual configuration meant that it was unable to act on the devices engaging in encryption. Nevertheless, a wide range of high-scoring Darktrace DETECT/Network models breached which were easily visible within the customer’s threat tray. This included multiple Enhanced Monitoring models that would have led to Proactive Threat Notifications (PTN) being alerted had the customer subscribed to the service. Whilst the attack was not prevented in this case, Darktrace analysts were able to give support to the customer via Ask the Expert (ATE), providing in-depth analysis of the compromise including a list of likely compromised devices and credentials. This helped the customer to work on post-compromise recovery effectively and ensured the ransomware had reduced impact within their environment. 

Schlussfolgerung 

While traditional security solutions may be able to deal well with ransomware that uses known signatures, AI is needed to spot new or unknown types of attack – a reliance on signatures will lead to these types of attack being missed.  

Remediation can also be far more difficult if a victim doesn’t know how to identify the compromised devices or credentials because there are no known IOCs. Darktrace model breaches will highlight suspicious activity in each part of the cyber kill chain, whether involving a known IOC or not, helping the customer to efficiently identify areas of compromise and effectively remediate (Figure 3).  

Figure 3: An example of the various stages of the attack on one of the compromise servers being identified by Cyber AI Analyst. Note: this screenshot is from DETECT/Network v.5 

As long as threat actors continue to develop new methods of attack, the ability to detect uncategorized threats is required. As demonstrated above, Darktrace’s anomaly-based approach lends itself perfectly to detecting these novel or uncategorized threats. 

Thanks to Max Heinemeyer for his contributions to this blog.

Appendices

Model Breaches

·      Anomalous Connection / SMB Enumeration

·      Anomalous Connection / Suspicious Activity On High Risk Device

·      Anomalous Server Activity / Anomalous External Activity from Critical Network Device

·      Compliance / Default Credential Usage

·      Device / SMB Session Bruteforce

·      Anomalous Connection / Sustained MIME Type Conversion

·      Anomalous Connection / Unusual SMB Version 1 Connectivity

·      Anomalous File / Internal / Additional Extension Appended to SMB File

·      Compliance / Possible Unencrypted Password File on Server

·      Compliance / SMB Drive Write

·      Compliance / Weak Active Directory Ticket Encryption

·      Compromise / Ransomware / Possible Ransom Note Write

·      Compromise / Ransomware / Ransom or Offensive Words Written to SMB

·      Compromise / Ransomware / SMB Reads then Writes with Additional Extensions

·      Compromise / Ransomware / Suspicious SMB Activity

·      Device / Attack and Recon Tools in SMB

·      Device / Multiple Lateral Movement Model Breaches

·      Device / New or Unusual Remote Command Execution

·      Device / SMB Lateral Movement

·      Device / Suspicious File Writes to Multiple Hidden SMB Shares

·      Device / Suspicious Network Scan Activity

·      Unusual Activity / Anomalous SMB Read & Write

·      Unusual Activity / Anomalous SMB to Server

·      User / Kerberos Password Bruteforce

References

[1] https://www.mandiant.com/resources/zero-days-exploited-2021

[2] https://www.virustotal.com/gui/ip-address/162.243.25.33/relations

[3] https://www.zscaler.com/blogs/security-research/analysis-blackbyte-ransomwares-go-based-variants

EINBLICKE IN DAS SOC-Team
Darktrace Cyber-Analysten sind erstklassige Experten für Threat Intelligence, Threat Hunting und Incident Response. Sie bieten Tausenden von Darktrace Kunden auf der ganzen Welt rund um die Uhr SOC-Support. Einblicke in das SOC-Team wird ausschließlich von diesen Experten verfasst und bietet Analysen von Cyber-Vorfällen und Bedrohungstrends, die auf praktischen Erfahrungen in diesem Bereich basieren.
AUTOR
ÜBER DEN AUTOR
Emma Foulger
Senior Cyber Analyst
Book a 1-1 meeting with one of our experts
share this article
PRODUKT-SPOTLIGHT
Keine Artikel gefunden.
COre-Abdeckung
Keine Artikel gefunden.

More in this series

Keine Artikel gefunden.

Blog

E-Mail

How to Protect your Organization Against Microsoft Teams Phishing Attacks

Standard-BlogbildStandard-Blogbild
21
May 2024

The problem: Microsoft Teams phishing attacks are on the rise

Around 83% of Fortune 500 companies rely on Microsoft Office products and services1, with Microsoft Teams and Microsoft SharePoint in particular emerging as critical platforms to the business operations of the everyday workplace. Researchers across the threat landscape have begun to observe these legitimate services being leveraged more and more by malicious actors as an initial access method.

As Teams becomes a more prominent feature of the workplace many employees rely on it for daily internal and external communication, even surpassing email usage in some organizations. As Microsoft2 states, "Teams changes your relationship with email. When your whole group is working in Teams, it means you'll all get fewer emails. And you'll spend less time in your inbox, because you'll use Teams for more of your conversations."

However, Teams can be exploited to send targeted phishing messages to individuals either internally or externally, while appearing legitimate and safe. Users might receive an external message request from a Teams account claiming to be an IT support service or otherwise affiliated with the organization. Once a user has accepted, the threat actor can launch a social engineering campaign or deliver a malicious payload. As a primarily internal tool there is naturally less training and security awareness around Teams – due to the nature of the channel it is assumed to be a trusted source, meaning that social engineering is already one step ahead.

Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)
Figure 1: Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)

Microsoft Teams Phishing Examples

Microsoft has identified several major phishing attacks using Teams within the past year.

In July 2023, Microsoft announced that the threat actor known as Midnight Blizzard – identified by the United States as a Russian state-sponsored group – had launched a series of phishing campaigns via Teams with the aim of stealing user credentials. These attacks used previously compromised Microsoft 365 accounts and set up new domain names that impersonated legitimate IT support organizations. The threat actors then used social engineering tactics to trick targeted users into sharing their credentials via Teams, enabling them to access sensitive data.  

At a similar time, threat actor Storm-0324 was observed sending phishing lures via Teams containing links to malicious SharePoint-hosted files. The group targeted organizations that allow Teams users to interact and share files externally. Storm-0324’s goal is to gain initial access to hand over to other threat actors to pursue more dangerous follow-on attacks like ransomware.

For a more in depth look at how Darktrace stops Microsoft Teams phishing read our blog: Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

The market: Existing Microsoft Teams security solutions are insufficient

Microsoft’s native Teams security focuses on payloads, namely links and attachments, as the principal malicious component of any phishing. These payloads are relatively straightforward to detect with their experience in anti-virus, sandboxing, and IOCs. However, this approach is unable to intervene before the stage at which payloads are delivered, before the user even gets the chance to accept or deny an external message request. At the same time, it risks missing more subtle threats that don’t include attachments or links – like early stage phishing, which is pure social engineering – or completely new payloads.

Equally, the market offering for Teams security is limited. Security solutions available on the market are always payload-focused, rather than taking into account the content and context in which a link or attachment is sent. Answering questions like:

  • Does it make sense for these two accounts to speak to each other?
  • Are there any linguistic indicators of inducement?

Furthermore, they do not correlate with email to track threats across multiple communication environments which could signal a wider campaign. Effectively, other market solutions aren’t adding extra value – they are protecting against the same types of threats that Microsoft is already covering by default.

The other aspect of Teams security that native and market solutions fail to address is the account itself. As well as focusing on Teams threats, it’s important to analyze messages to understand the normal mode of communication for a user, and spot when a user’s Teams activity might signal account takeover.

The solution: How Darktrace protects Microsoft Teams against sophisticated threats

With its biggest update to Darktrace/Email ever, Darktrace now offers support for Microsoft Teams. With that, we are bringing the same AI philosophy that protects your email and accounts to your messaging environment.  

Our Self-Learning AI looks at content and context for every communication, whether that’s sent in an email or Teams message. It looks at actual user behavior, including language patterns, relationship history of sender and recipient, tone and payloads, to understand if a message poses a threat. This approach allows Darktrace to detect threats such as social engineering and payloadless attacks using visibility and forensic capabilities that Microsoft security doesn’t currently offer, as well as early symptoms of account compromise.  

Unlike market solutions, Darktrace doesn’t offer a siloed approach to Teams security. Data and signals from Teams are shared across email to inform detection, and also with the wider Darktrace ActiveAI security platform. By correlating information from email and Teams with network and apps security, Darktrace is able to better identify suspicious Teams activity and vice versa.  

Interested in the other ways Darktrace/Email augments threat detection? Read our latest blog on how improving the quality of end-user reporting can decrease the burden on the SOC. To find our more about Darktrace's enduring partnership with Microsoft, click here.

References

[1] Essential Microsoft Office Statistics in 2024

[2] Microsoft blog, Microsoft Teams and email, living in harmony, 2024

Continue reading
About the author
Carlos Gray
Product Manager

Blog

Einblicke in das SOC-Team

Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

Standard-BlogbildStandard-Blogbild
20
May 2024

Social Engineering in Phishing Attacks

Faced with increasingly cyber-aware endpoint users and vigilant security teams, more and more threat actors are forced to think psychologically about the individuals they are targeting with their phishing attacks. Social engineering methods like taking advantage of the human emotions of their would-be victims, pressuring them to open emails or follow links or face financial or legal repercussions, and impersonating known and trusted brands or services, have become common place in phishing campaigns in recent years.

Phishing with Microsoft Teams

The malicious use of the popular communications platform Microsoft Teams has become widely observed and discussed across the threat landscape, with many organizations adopting it as their primary means of business communication, and many threat actors using it as an attack vector. As Teams allows users to communicate with people outside of their organization by default [1], it becomes an easy entry point for potential attackers to use as a social engineering vector.

In early 2024, Darktrace/Apps™ identified two separate instances of malicious actors using Microsoft Teams to launch a phishing attack against Darktrace customers in the Europe, the Middle East and Africa (EMEA) region. Interestingly, in this case the attackers not only used a well-known legitimate service to carry out their phishing campaign, but they were also attempting to impersonate an international hotel chain.

Despite these attempts to evade endpoint users and traditional security measures, Darktrace’s anomaly detection enabled it to identify the suspicious phishing messages and bring them to the customer’s attention. Additionally, Darktrace’s autonomous response capability, was able to follow-up these detections with targeted actions to contain the suspicious activity in the first instance.

Darktrace Coverage of Microsoft Teams Phishing

Chats Sent by External User and Following Actions by Darktrace

On February 29, 2024, Darktrace detected the presence of a new external user on the Software-as-a-Service (SaaS) environment of an EMEA customer for the first time. The user, “REDACTED@InternationalHotelChain[.]onmicrosoft[.]com” was only observed on this date and no further activities were detected from this user after February 29.

Later the same day, the unusual external user created its first chat on Microsoft Teams named “New Employee Loyalty Program”. Over the course of around 5 minutes, the user sent 63 messages across 21 different chats to unique internal users on the customer’s SaaS platform. All these chats included the ‘foreign tenant user’ and one of the customer’s internal users, likely in an attempt to remain undetected. Foreign tenant user, in this case, refers to users without access to typical internal software and privileges, indicating the presence of an external user.

Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Figure 1: Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.
Figure 2: Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.

Darktrace identified that the external user had connected from an unusual IP address located in Poland, 195.242.125[.]186. Darktrace understood that this was unexpected behavior for this user who had only previously been observed connecting from the United Kingdom; it further recognized that no other users within the customer’s environment had connected from this external source, thereby deeming it suspicious. Further investigation by Darktrace’s analyst team revealed that the endpoint had been flagged as malicious by several open-source intelligence (OSINT) vendors.

External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.
Figure 3: External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.

Following Darktrace’s initial detection of these suspicious Microsoft Teams messages, Darktrace's autonomous response was able to further support the customer by providing suggested mitigative actions that could be applied to stop the external user from sending any additional phishing messages.

Unfortunately, at the time of this attack Darktrace's autonomous response capability was configured in human confirmation mode, meaning any autonomous response actions had to be manually actioned by the customer. Had it been enabled in autonomous response mode, it would have been able promptly disrupt the attack, disabling the external user to prevent them from continuing their phishing attempts and securing precious time for the customer’s security team to begin their own remediation procedures.

Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.
Figure 4: Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.

External URL Sent within Teams Chats

Within the 21 Teams chats created by the threat actor, Darktrace identified 21 different external URLs being sent, all of which included the domain "cloud-sharcpoint[.]com”. Many of these URLs had been recently established and had been flagged as malicious by OSINT providers [3]. This was likely an attempt to impersonate “cloud-sharepoint[.]com”, the legitimate domain of Microsoft SharePoint, with the threat actor attempting to ‘typo-squat’ the URL to convince endpoint users to trust the legitimacy of the link. Typo-squatted domains are commonly misspelled URLs registered by opportunistic attackers in the hope of gaining the trust of unsuspecting targets. They are often used for nefarious purposes like dropping malicious files on devices or harvesting credentials.

Upon clicking this malicious link, users were directed to a similarly typo-squatted domain, “InternatlonalHotelChain[.]sharcpoInte-docs[.]com”. This domain was likely made to appear like the SharePoint URL used by the international hotel chain being impersonated.

Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.
Figure 5: Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.

This fake SharePoint page used the branding of the international hotel chain and contained a document named “New Employee Loyalty Program”; the same name given to the phishing messages sent by the attacker on Microsoft Teams. Upon accessing this file, users would be directed to a credential harvester, masquerading as a Microsoft login page, and prompted to enter their credentials. If successful, this would allow the attacker to gain unauthorized access to a user’s SaaS account, thereby compromising the account and enabling further escalation in the customer’s environment.

Figure 6: A fake Microsoft login page that popped-up when attempting to open the ’New Employee Loyalty Program’ document.

This is a clear example of an attacker attempting to leverage social engineering tactics to gain the trust of their targets and convince them to inadvertently compromise their account. Many corporate organizations partner with other companies and well-known brands to offer their employees loyalty programs as part of their employment benefits and perks. As such, it would not necessarily be unexpected for employees to receive such an offer from an international hotel chain. By impersonating an international hotel chain, threat actors would increase the probability of convincing their targets to trust and click their malicious messages and links, and unintentionally compromising their accounts.

In spite of the attacker’s attempts to impersonate reputable brands, platforms, Darktrace/Apps was able to successfully recognize the malicious intent behind this phishing campaign and suggest steps to contain the attack. Darktrace recognized that the user in question had deviated from its ‘learned’ pattern of behavior by connecting to the customer’s SaaS environment from an unusual external location, before proceeding to send an unusually large volume of messages via Teams, indicating that the SaaS account had been compromised.

A Wider Campaign?

Around a month later, in March 2024, Darktrace observed a similar incident of a malicious actor impersonating the same international hotel chain in a phishing attacking using Microsoft Teams, suggesting that this was part of a wider phishing campaign. Like the previous example, this customer was also based in the EMEA region.  

The attack tactics identified in this instance were very similar to the previously example, with a new external user identified within the network proceeding to create a series of Teams messages named “New Employee Loyalty Program” containing a typo-squatted external links.

There were a few differences with this second incident, however, with the attacker using the domain “@InternationalHotelChainExpeditions[.]onmicrosoft[.]com” to send their malicious Teams messages and using differently typo-squatted URLs to imitate Microsoft SharePoint.

As both customers targeted by this phishing campaign were subscribed to Darktrace’s Proactive Threat Notification (PTN) service, this suspicious SaaS activity was promptly escalated to the Darktrace Security Operations Center (SOC) for immediate triage and investigation. Following their investigation, the SOC team sent an alert to the customers informing them of the compromise and advising urgent follow-up.

Schlussfolgerung

While there are clear similarities between these Microsoft Teams-based phishing attacks, the attackers here have seemingly sought ways to refine their tactics, techniques, and procedures (TTPs), leveraging new connection locations and creating new malicious URLs in an effort to outmaneuver human security teams and conventional security tools.

As cyber threats grow increasingly sophisticated and evasive, it is crucial for organizations to employ intelligent security solutions that can see through social engineering techniques and pinpoint suspicious activity early.

Darktrace’s Self-Learning AI understands customer environments and is able to recognize the subtle deviations in a device’s behavioral pattern, enabling it to effectively identify suspicious activity even when attackers adapt their strategies. In this instance, this allowed Darktrace to detect the phishing messages, and the malicious links contained within them, despite the seemingly trustworthy source and use of a reputable platform like Microsoft Teams.

Credit to Min Kim, Cyber Security Analyst, Raymond Norbert, Cyber Security Analyst and Ryan Traill, Threat Content Lead

Anhang

Darktrace Model Detections

SaaS Model

Large Volume of Messages Sent from New External User

SaaS / Unusual Activity / Large Volume of Messages Sent from New External User

Indicators of Compromise (IoCs)

IoC – Type - Description

https://cloud-sharcpoint[.]com/[a-zA-Z0-9]{15} - Example hostname - Malicious phishing redirection link

InternatlonalHotelChain[.]sharcpolnte-docs[.]com – Hostname – Redirected Link

195.242.125[.]186 - External Source IP Address – Malicious Endpoint

MITRE Tactics

Tactic – Technique

Phishing – Initial Access (T1566)

References

[1] https://learn.microsoft.com/en-us/microsoftteams/trusted-organizations-external-meetings-chat?tabs=organization-settings

[2] https://www.virustotal.com/gui/ip-address/195.242.125.186/detection

[3] https://www.virustotal.com/gui/domain/cloud-sharcpoint.com

Continue reading
About the author
Min Kim
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Starten Sie Ihren kostenlosen Test
Darktrace AI protecting a business from cyber threats.