Blog

OT

Vordenkerrolle

Schutz von Stadien und Veranstaltungen weltweit mit selbstlernender KI

Standard-BlogbildStandard-Blogbild
02
März 2022
02
März 2022

Stadium and large public venue operators are confronted with a unique set of cyber security challenges. Often described as a ‘honeypot’ for cyber-criminals, the entertainment industry is an attractive target for threat actors for three main reasons:

  • Hacktivism – as witnessed during the Rio and Tokyo Olympic Games;
  • The global stage of international events makes it a target for geopolitically motivated cyber-terrorism;
  • The large sums of money at stake make event organizers and associated parties a prime target for financially motivated cyber-crime like ransomware.

The potential ramifications of cyber disruption during a large-scale event cannot be overstated. A momentary lapse in access to power could bring TV broadcasts to a halt; disruption to access controls could restrict fans from entering the grounds; CCTV outages could increase the risk of criminal behavior and physical injuries. If data is not reliable and stadium machines are outputting the wrong metrics, a venue could become dangerously overcrowded. The barrier between the cyber and physical worlds has long dissolved – cyber-attacks threaten human safety.

In this blog, I explore the key challenges of stadium cyber security and explain the unique capabilities of Self-Learning AI that led me to adopt Darktrace as a head of ICT and cyber security for international venues and events.

The access paradox

The biggest challenge lies in the paradox of securing a site where various internal services are provided to a large number of unknown and uncontrolled users, suppliers and devices.

When it’s game time, or ‘D-Day’, you see a huge influx of thousands of people, each with their own devices, needing to connect to your network and your infrastructure. The floodgates are opened. But of course, certain parts of your digital environment need to remain protected: your sensitive employee and customer data, your critical OT systems. I liken this to opening the door to your home, and letting the entire town come in and wander around. But you still need to secure your master bedroom.

A multitude of different actors must be able to work on site to provide services or content during the event. Broadcasters, staff and suppliers need to have access to managing the show, and all of these people need to access or interact with the IT infrastructure. In many ways, these additional bodies are already inside the perimeter and could host unknown malicious threats.

Achieving this balance between accessibility and security requires a shift in mindset from perimeter-based security to one that can detect and respond to threats on the inside. The complexities involved requires technology that can identify malicious behavior in real time based on the wider context of an incident. A particular behavior or connection may be benign in one context and yet critically disruptive in another — tools and technology must be able to discern between the two.

This is why I considered Darktrace’s Self-Learning AI a suitable fit: rather than defending at the perimeter, it focuses on detecting and responding to malicious activity already inside. Because it learns the unique ‘patterns of life’ of its surroundings, it can detect subtle deviations that indicate a threat and initiate a targeted response – without relying on pre-programmed rules and playbooks.

IT/OT convergence

The second key challenge is the issue of IT and OT convergence. Typical stadiums and arenas consist of a wide range of Industrial Control Systems (ICS).

Figure 1: The interconnected IT/OT components of a stadium

This involves a complex and messy array of switches, cables, CCTV cameras, as well as devices and technologies being brought in by the media and the press, and all these IT and OT components are now interconnected, which means these technologies now have Internet Protocol (IP)-based threats to manage.

The same challenges that the corporate infrastructure for stadium management faces in cyber security are therefore also now an issue for ICS security.

This challenge cannot be addressed by viewing IT and OT security in isolation — these two environments are linked because of the analogue migration to IP. A unified approach is required to detect and respond to threats that start in IT before moving to industrial systems. In addition, cyber security technology must be able to deal with complexity.

Darktrace’s AI thrives in the most complex environments, with more data points adding more context to inform the AI’s decision making. It covers OT and IT with a single, unified AI engine, that can also detect and respond across cloud infrastructure, SaaS applications, email systems and endpoints. It is ready to adapt to the messy, interconnected systems that make up large stadiums’ digital infrastructure.

The time factor

Finally, the nature of stadium events means that timing is critical and puts enormous pressure on the organizers and operators. ‘D-Day’ cannot be replayed or postponed, and so if cyber disruption occurs during the event, every minute is crucial.

There is consequently a strong emphasis on two key metrics that will be familiar to the wider audience: Mean Time To Know (MTTK) — how long it takes the security team need to be aware of an incident; and Mean Time To Restore (MTTR) — how quickly a team can act to contain the threat. It is perhaps more imperative in stadium event management than anywhere else that these two metrics be minimized.

This leads to the third criteria in assessing cyber security technology: does it help with response? And critically, can that response be nuanced and targeted, able to contain that threat without causing further disruption?

To this end, Darktrace’s Autonomous Response takes machine-speed action to contain cyber-attacks, when humans are too slow to react or aren’t around at all. It’s powered by Darktrace’s AI, so it has a nuanced and continuously updating understanding of what’s ‘normal’ across IT and OT systems. This means its response actions are targeted: designed to eliminate the threat, but not at the cost of disruption. Depending on the nature and severity of the threat, the technology can block specific malicious connections by enforcing the normal ‘pattern of life’ of a device or account. When every second counts, this is the speed and granularity that you need in a cyber security technology.

Plug and play

For stadiums and large venue operators, Darktrace’s trial period is typically extended for the AI to learn ‘normal’ over a longer period of time, capturing both ‘business as usual’, and ‘event time’. The sophistication of the AI enables it to factor event day into its understanding of ‘normal’.

When event day comes around, the technology has a nuanced understanding of how every user and device typically behaves, and can identify subtle deviations indicative of a threat.

It can be deployed across every area of the digital enterprise – including email, adding an invaluable layer of defense as any new event will entail thousands of email exchanges with new senders to prepare for the event, adding to the propagation risk of viruses or ransomware. It also covers cloud and SaaS environments with the same self-learning approach, stopping anomalous behaviors that point to account takeover and other cloud-based threats.

Wherever it is deployed, Darktrace allows the stadium operator to focus on the vital part of the game and offers real-time protection without any modification in the network topology or infrastructure.

An adaptive defense

Cyber-criminals are constantly developing their approach in an attempt to evade security tools trained to look for specific hallmarks of an attack. As they get creative and continuously experiment with new tactics and techniques, the human operators using these tools are forced into a constant state of catch up.

Figure 2: Cyber security is an evolving game of attack and defense

An AI-based approach that learns an organization from the ground up puts an end to this game of ‘cat and mouse’, shifting the balance in favor of the defenders and allowing them to stay ahead of the threat.

With a nuanced understanding of what’s ‘normal’ for the business, unified IT/OT coverage, and an Autonomous Response solution that takes immediate, targeted action, the playing field is levelled and large stadium and events operators can focus on delivering the best possible experience for attendees, digital viewers, partners and performers.

Sie mögen das und wollen mehr?

Erhalten Sie den neuesten Blog per E-Mail
Vielen Dank! Ihre Anfrage ist eingegangen!
Huch! Beim Absenden des Formulars ist etwas schief gelaufen.
EINBLICKE IN DAS SOC-Team
Darktrace Cyber-Analysten sind erstklassige Experten für Threat Intelligence, Threat Hunting und Incident Response. Sie bieten Tausenden von Darktrace Kunden auf der ganzen Welt rund um die Uhr SOC-Support. Einblicke in das SOC-Team wird ausschließlich von diesen Experten verfasst und bietet Analysen von Cyber-Vorfällen und Bedrohungstrends, die auf praktischen Erfahrungen in diesem Bereich basieren.
AUTOR
ÜBER DEN AUTOR
Karim Benslimane
Direktor für Cyber Intelligence

Karim Benslimane is Darktrace’s Director of Cyber Intelligence, working with clients in the public and private sector to analyse the most sophisticated cyber-threats today, and advising security professionals on the employment of artificial intelligence to strengthen their defensive strategy. Prior to joining Darktrace, Karim was Information & Communication Director at the Singapore Sports Hub, Head of IT at Vinci Stadium, and the IT Research & Development Manager at Stade de France. Karim is a technical specialist in cyber and counter-terrorism exercises with over two decades of experience defending the sports and event industry from sophisticated threats. He has led major IT and cyber security projects for international arenas and events such as the Football World Cup, Rugby World Cup, World Athletics Championships and over 500 games and concerts. He is based in Singapore.

share this article
COre-Abdeckung

Blog

Cloud

Darktrace Integrates Self-Learning AI with Amazon Security Lake to Support Security Investigations

Standard-BlogbildStandard-Blogbild
31
May 2023

Darktrace has deepened its relationship with AWS by integrating its detection and response capabilities with Amazon Security Lake

This development will allow mutual customers to seamlessly combine Darktrace AI’s bespoke understanding of their organization with the Threat Intelligence offered by other security tools, and investigate all of their alerts in one central location. 

This integration will improve the value security teams get from both products, streamlining analyst workflows and improving their ability to detect and respond to the full spectrum of known and unknown cyber-threats. 

How Darktrace and Amazon Security Lake augment security teams

Amazon Security Lake is a newly-released service that automatically centralizes an organization’s security data from cloud, on-premises, and custom sources into a customer owned purpose-built data lake. Both Darktrace and Amazon Security Lake support the Open Cybersecurity Schema Framework (OCSF), an open standard to simplify, combine, and analyze security logs.  

Customers can store security logs, events, alerts, and other relevant data generated by various AWS services and security tools. By consolidating security data in a central lake, organizations can gain a holistic view of their security posture, perform advanced analytics, detect anomalies and open investigations to improve their security practices.

With Darktrace DETECT and RESPOND AI engines covering all assets across IT, OT, network, endpoint, IoT, email and cloud, organizations can augment the value of their security data lakes by feeding Darktrace’s rich and context-aware datapoints to Amazon Security Lake. 

Amazon Security Lake empowers security teams to improve the protection of your digital estate:

  • Quick and painless data normalization 
  • Fast-tracks ability to investigate, triage and respond to security events
  • Broader visibility aids more effective decision-making
  • Surfaces and prioritizes anomalies for further investigation
  • Single interface for seamless data management

How will Darktrace customers benefit?

Across the Cyber AI Loop, all Darktrace solutions have been architected with AWS best practices in mind. With this integration, Darktrace is bringing together its understanding of ‘self’ for every organization with the centralized data visibility of the Amazon Security Lake. Darktrace’s unique approach to cyber security, powered by groundbreaking AI research, delivers a superior dataset based on a deep and interconnected understanding of the enterprise. 

Where other cyber security solutions are trained to identify threats based on historical attack data and techniques, Darktrace DETECT gains a bespoke understanding of every digital environment, continuously analyzing users, assets, devices and the complex relationships between them. Our AI analyzes thousands of metrics to reveal subtle deviations that may signal an evolving issue – even unknown techniques and novel malware. It distinguishes between malicious and benign behavior, identifying harmful activity that typically goes unnoticed. This rich dataset is fed into RESPOND, which takes precise action to neutralize threats against any and every asset, no matter where data resides.

Both DETECT and RESPOND are supported by Darktrace Self-Learning AI, which provides full, real-time visibility into an organization’s systems and data. This always-on threat analysis already makes humans better at cyber security, improving decisions and outcomes based on total visibility of the digital ecosystem, supporting human performance with AI coverage and empowering security teams to proactively protect critical assets.  

Converting Darktrace alerts to the Amazon Security Lake Open Cybersecurity Schema Framework (OCSF) supplies the Security Operations Center (SOC) and incident response team with contextualized data, empowering them to accelerate their investigation, triage and response to potential cyber threats. 

Darktrace is available for purchase on the AWS Marketplace.

Learn more about how Darktrace provides full-coverage, AI-powered cloud security for AWS, or see how our customers use Darktrace in their AWS cloud environments.

Continue reading
About the author
Nabil Zoldjalali
VP, Technologie-Innovation

Blog

Einblicke in das SOC-Team

Tracking the Hive: Darktrace’s Detection of a Hive Ransomware-as-Service

Standard-BlogbildStandard-Blogbild
23
May 2023

The threat of ransomware continues to be a constant concern for security teams across the cyber threat landscape. With the growing popularity of Ransomware-as-a-Service (RaaS), it is becoming more and more accessible for even inexperienced of would-be attackers. As a result of this low barrier to entry, the volume of ransomware attacks is expected to increase significantly.

What’s more, RaaS is a highly tailorable market in which buyers can choose from varied kits and features to use in their ransomware deployments meaning attacks will rarely behave the same. To effectively detect and safeguard against these differentiations, it is crucial to implement security measures that put the emphasis on detecting anomalies and focusing on deviations in expected behavior, rather than relying on depreciated indicators of compromise (IoC) lists or playbooks that focus on attack chains unable to keep pace with the increasing speed of ransomware evolution.

In early 2022, Darktrace DETECT/Network™ identified several instances of Hive ransomware on the networks of multiple customers. Using its anomaly-based detection, Darktrace was able to successfully detect the attacks and multiple stages of the kill chain, including command and control (C2) activity, lateral movement, data exfiltration, and ultimately data encryption and the writing of ransom notes.

Hive Ransomware 

Hive ransomware is a relatively new strain that was first observed in the wild in June 2021. It is known to target a variety of industries including healthcare, energy providers, and retailers, and has reportedly attacked over 1,500 organizations, collecting more than USD 100m in ransom payments [1].

Hive is distributed via a RaaS model where its developers update and maintain the code, in return for a percentage of the eventual ransom payment, while users (or affiliates) are given the tools to carry out attacks using a highly sophisticated and complex malware they would otherwise be unable to use. Hive uses typical tactics, techniques and procedures (TTPs) associated with ransomware, though they do vary depending on the Hive affiliate carrying out the attack.

In most cases a double extortion attack is carried out, whereby data is first exfiltrated and then encrypted before a ransom demand is made. This gives attackers extra leverage as victims are at risk of having their sensitive data leaked to the public on websites such as the ‘HiveLeaks’ TOR website.

Attack Timeline

Owing to the highly customizable nature of RaaS, the tactics and methods employed by Hive actors are expected to differ on a case-by-case basis. Nonetheless in the majority of Hive ransomware incidents identified on Darktrace customer environments, Darktrace DETECT observed the following general attack stages and features. This is possibly indicative of the attacks originating from the same threat actor(s) or from a widely sold batch with a particular configuration to a variety of actors.

Attack timeline ransomware as a service
Figure 1: A typical attack timeline of Hive ransomware attacks observed by Darktrace.

Initial Access 

Although Hive actors are known to gain initial access to networks through multiple different vectors, the two primary methods reported by security researchers are the exploitation of Microsoft Exchange vulnerabilities, or the distribution of phishing emails with malicious attachments [2][3].

In the early stages of one Hive ransomware attack observed on the network of a Darktrace customer, for example, Darktrace detected a device connecting to the rare external location 23.81.246[.]84, with a PowerShell user agent via HTTP. During this connection, the device attempted to download an executable file named “file.exe”. It is possible that the file was initially accessed and delivered via a phishing email; however, as Darktrace/Email was not enabled at the time of the attack, this was outside of Darktrace’s purview. Fortunately, the connection failed the proxy authentication was thus blocked as seen in the packet capture (PCAP) in Figure 2. 

Shortly after this attempted download, the same device started to receive a high volume of incoming SSL connections from a rare external endpoint, namely 146.70.87[.]132. Darktrace logged that this endpoint was using an SSL certificate signed by Go Daddy CA, an easily obtainable and accessible SSL certificate, and that the increase in incoming SSL connections from this endpoint was unusual behavior for this device. 

It is likely that this highly anomalous activity detected by Darktrace indicates when the ransomware attack began, likely initial payload download.  

Darktrace DETECT models:

  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System
Figure 2: PCAP of the HTTP connection to the rare endpoint 23.81.246[.]84 showing the failed proxy authentication.

C2 Beaconing 

Following the successful initial access, Hive actors begin to establish their C2 infrastructure on infected networks through numerous connections to C2 servers, and the download of additional stagers. 

On customer networks infected by Hive ransomware, Darktrace identified devices initiating a high volume of connections to multiple rare endpoints. This very likely represented C2 beaconing to the attacker’s infrastructure. In one particular example, further open-source intelligence (OSINT) investigation revealed that these endpoints were associated with Cobalt Strike.

Darktrace DETECT models:

  • Anomalous Connection / Multiple Connections to New External TCP
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Suspicious HTTP Beacons to Dotted Quad 
  • Compromise / SSL or HTTP Beacon
  • Device / Lateral Movement and C2 Activity

Internal Reconnaissance, Lateral Movement and Privilege Escalation

After C2 infrastructure has been established, Hive actors typically begin to uninstall antivirus products in an attempt to remain undetected on the network [3]. They also perform internal reconnaissance to look for vulnerabilities and open channels and attempt to move laterally throughout the network.

Amid the C2 connections, Darktrace was able to detect network scanning activity associated with the attack when a device on one customer network was observed initiating an unusually high volume of connections to other internal devices. A critical network device was also seen writing an executable file “mimikatz.exe” via SMB which appears to be the Mimikatz attack tool commonly used for credential harvesting. 

There were also several detections of lateral movement attempts via RDP and DCE-RPC where the attackers successfully authenticated using an “Administrator” credential. In one instance, a device was also observed performing ITaskScheduler activity. This service is used to remotely control tasks running on machines and is commonly observed as part of malicious lateral movement activity. Darktrace DETECT understood that the above activity represented a deviation from the devices’ normal pattern of behavior and the following models were breached:

Darktrace DETECT models:

  • Anomalous Connection / Anomalous DRSGetNCChanges Operation
  • Anomalous Connection / New or Uncommon Service Control
  • Anomalous Connection / Unusual Admin RDP Session
  • Anomalous Connection / Unusual SMB Version 1 Connectivity
  • Compliance / SMB Drive Write
  • Device / Anomalous ITaskScheduler Activity
  • Device / Attack and Recon Tools
  • Device / Attack and Recon Tools In SMB
  • Device / EXE Files Distributed to Multiple Devices
  • Device / Suspicious Network Scan Activity
  • Device / Increase in New RPC Services
  • User / New Admin Credentials on Server

Exfiltration von Daten

At this stage of the attack, Hive actors have been known to carry out data exfiltration activity on infected networks using a variety of different methods. The Cybersecurity & Infrastructure Security Agency (CISA) reported that “Hive actors exfiltrate data likely using a combination of Rclone and the cloud storage service Mega[.]nz” [4]. Darktrace DETECT identified an example of this when a device on one customer network was observed making HTTP connections to endpoints related to Mega, including “w.apa.mega.co[.]nz”, with the user agent “rclone/v1.57.0” with at least 3 GiB of data being transferred externally (Figure 3). The same device was also observed transferring at least 3.6 GiB of data via SSL to the rare external IP, 158.51.85[.]157.

Figure 3: A summary of a device’s external connections to multiple endpoints and the respective amounts of data exfiltrated to Mega storage endpoints.

In another case, a device was observed uploading over 16 GiB of data to a rare external endpoint 93.115.27[.]71 over SSH. The endpoint in question was seen in earlier beaconing activity suggesting that this was likely an exfiltration event. 

However, Hive ransomware, like any other RaaS kit, can differ greatly in its techniques and features, and it is important to note that data exfiltration may not always be present in a Hive ransomware attack. In one incident detected by Darktrace, there were no signs of any data leaving the customer environment, indicating data exfiltration was not part of the Hive actor’s objectives.

Darktrace DETECT models:

  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Lots of New Connections
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Anomalous Connection / Suspicious Self-Signed SSL
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Device / New User Agent and New IP
  • Unusual Activity / Unusual External Data to New Endpoints
  • Unusual Activity / Unusual External Data Transfer
  • Unusual Activity / Enhanced Unusual External Data Transfer

Ransomware Deployment

In the final stage of a typical Hive ransomware attack, the ransomware payload is deployed and begins to encrypt files on infected devices. On one customer network, Darktrace detected several devices connecting to domain controllers (DC) to read a file named “xxx.exe”. Several sources have linked this file name with the Hive ransomware payload [5].

In another example, Darktrace DETECT observed multiple devices downloading the executable files “nua64.exe” and “nua64.dll” from a rare external location, 194.156.90[.]25. OSINT investigation revealed that the files are associated with Hive ransomware.

Figure 4: Security vendor analysis of the malicious file hash [6] associated with Hive ransomware. 

Shortly after the download of this executable, multiple devices were observed performing an unusual amount of file encryption, appending randomly generated strings of characters to file extensions. 

Although it has been reported that earlier versions of Hive ransomware encrypted files with a “.hive” extension [7], Darktrace observed across multiple customers that encrypted files had extensions that were partially-randomized, but consistently 20 characters long, matching the regular expression “[a-zA-Z0-9\-\_]{8}[\-\_]{1}[A-Za-z0-9\-\_]{11}”.

Figure 5: Device Event Log showing SMB reads and writes of encrypted files with a randomly generated extension of 20 characters. 

Following the successful encryption of files, Hive proceeds to drop a ransom note, named “HOW_TO_DECRYPT.txt”, into each affected directory. Typically, the ransom note will contain a link to Hive’s “sales department” and, in the event that exfiltration took place, a link to the “HiveLeaks” site, where attackers threaten to publish exfiltrated data if their demands are not met (Figure 6).  In cases of Hive ransomware detected by Darktrace, multiple devices were observed attempting to contact “HiveLeaks” TOR domains, suggesting that endpoint users had followed links provided to them in ransom notes.

Figure 6: Sample of a Hive ransom note [4].

Examples of file extensions:

  • 36C-AT9-_wm82GvBoCPC
  • 36C-AT9--y6Z1G-RFHDT
  • 36C-AT9-_x2x7FctFJ_q
  • 36C-AT9-_zK16HRC3QiL
  • 8KAIgoDP-wkQ5gnYGhrd
  • kPemi_iF_11GRoa9vb29
  • kPemi_iF_0RERIS1m7x8
  • kPemi_iF_7u7e5zp6enp
  • kPemi_iF_y4u7pB3d3f3
  • U-9Xb0-k__T0U9NJPz-_
  • U-9Xb0-k_6SkA8Njo5pa
  • zm4RoSR1_5HMd_r4a5a9 

Darktrace DETECT models:

  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Sustained MIME Type Conversion
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Compliance / SMB Drive Write
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Compromise / Ransomware / Possible Ransom Note Write
  • Compromise / High Priority Tor2Web
  • Compromise / Tor2Web
  • Device / EXE Files Distributed to Multiple Devices

Schlussfolgerung

As Hive ransomware attacks are carried out by different affiliates using varying deployment kits, the tactics employed tend to vary and new IoCs are regularly identified. Furthermore, in 2022 a new variant of Hive was written using the Rust programming language. This represented a major upgrade to Hive, improving its defense evasion techniques and making it even harder to detect [8]. 

Hive is just one of many RaaS offerings currently on the market, and this market is only expected to grow in usage and diversity of presentations.  As ransomware becomes more accessible and easier to deploy it is essential for organizations to adopt efficient security measures to identify ransomware at the earliest possible stage. 

Darktrace DETECT’s Self-Learning AI understands customer networks and learns the expected patterns of behavior across an organization’s digital estate. Using its anomaly-based detection Darktrace is able to identify emerging threats through the detection of unusual or unexpected behavior, without relying on rules and signatures, or known IoCs. 

Credit to: Emily Megan Lim, Cyber Analyst, Hyeongyung Yeom, Senior Cyber Analyst & Analyst Team Lead.

Appendices

MITRE AT&CK Mapping

Reconnaissance

T1595.001 – Scanning IP Blocks

T1595.002 – Vulnerability Scanning

Resource Development

T1583.006 – Web Services

Initial Access

T1078 – Valid Accounts

T1190 – Exploit Public-Facing Application

T1200 – Hardware Additions

Ausführung

T1053.005 – Scheduled Task

T1059.001 – PowerShell

Persistence/Privilege Escalation

T1053.005 – Scheduled Task

T1078 – Valid Accounts

Defense Evasion

T1078 – Valid Accounts

T1207 – Rogue Domain Controller

T1550.002 – Pass the Hash

Entdeckung

T1018 – Remote System Discovery

T1046 – Network Service Discovery

T1083 – File and Directory Discovery

T1135 – Network Share Discovery

Lateral Movement

T1021.001 – Remote Desktop Protocol

T1021.002 – SMB/Windows Admin Shares

T1021.003 – Distributed Component Object Model

T1080 – Taint Shared Content

T1210 – Exploitation of Remote Services

T1550.002 – Pass the Hash

T1570 – Lateral Tool Transfer

Collection

T1185 – Man in the Browser

Command and Control

T1001 – Data Obfuscation

T1071 – Application Layer Protocol

T1071.001 – Web Protocols

T1090.003 – Multi-hop proxy

T1095 – Non-Application Layer Protocol

T1102.003 – One-Way Communication

T1571 – Non-Standard Port

Exfiltration

T1041 – Exfiltration Over C2 Channel

T1567.002 – Exfiltration to Cloud Storage

Auswirkungen

T1486 – Data Encrypted for Impact

T1489 – Service Stop

List of IoCs 

23.81.246[.]84 - IP Address - Likely Malicious File Download Endpoint

146.70.87[.]132 - IP Address - Possible Ransomware Endpoint

5.199.162[.]220 - IP Address - C2 Endpoint

23.227.178[.]65 - IP Address - C2 Endpoint

46.166.161[.]68 - IP Address - C2 Endpoint

46.166.161[.]93 - IP Address - C2 Endpoint

93.115.25[.]139 - IP Address - C2 Endpoint

185.150.1117[.]189 - IP Address - C2 Endpoint

192.53.123[.]202 - IP Address - C2 Endpoint

209.133.223[.]164 - IP Address - Likely C2 Endpoint

cltrixworkspace1[.]com - Domain - C2 Endpoint

vpnupdaters[.]com - Domain - C2 Endpoint

93.115.27[.]71 - IP Address - Possible Exfiltration Endpoint

158.51.85[.]157 - IP Address - Possible Exfiltration Endpoint

w.api.mega.co[.]nz - Domain - Possible Exfiltration Endpoint

*.userstorage.mega.co[.]nz - Domain - Possible Exfiltration Endpoint

741cc67d2e75b6048e96db9d9e2e78bb9a327e87 - SHA1 Hash - Hive Ransomware File

2f9da37641b204ef2645661df9f075005e2295a5 - SHA1 Hash - Likely Hive Ransomware File

hiveleakdbtnp76ulyhi52eag6c6tyc3xw7ez7iqy6wc34gd2nekazyd[.]onion - TOR Domain - Likely Hive Endpoint

References

[1] https://www.justice.gov/opa/pr/us-department-justice-disrupts-hive-ransomware-variant

[2] https://www.varonis.com/blog/hive-ransomware-analysis

[3] https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-hive 

[4]https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-321a

[5] https://www.trendmicro.com/en_us/research/22/c/nokoyawa-ransomware-possibly-related-to-hive-.html

[6] https://www.virustotal.com/gui/file/60f6a63e366e6729e97949622abd9de6d7988bba66f85a4ac8a52f99d3cb4764/detection

[7] https://heimdalsecurity.com/blog/what-is-hive-ransomware/

[8] https://www.microsoft.com/en-us/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/ 

Continue reading
About the author
Emily Megan Lim
Cyber Analyst

Gute Nachrichten für Ihr Unternehmen.
Schlechte Nachrichten für die Bösewichte.

Starten Sie Ihren kostenlosen Test

Starten Sie Ihren kostenlosen Test

Flexible Lieferung
Sie können es entweder virtuell oder mit Hardware installieren.
Schnelle Installation
Nur 1 Stunde für die Einrichtung - und noch weniger für eine Testversion der E-Mail-Sicherheit.
Wählen Sie Ihre Reise
Testen Sie selbstlernende KI dort, wo Sie sie am meisten brauchen - in der Cloud, im Netzwerk oder für E-Mail.
Keine Verpflichtung
Voller Zugriff auf den Darktrace Threat Visualizer und drei maßgeschneiderte Bedrohungsberichte, ohne Kaufverpflichtung.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Huch! Beim Absenden des Formulars ist etwas schief gelaufen.

Demo anfordern

Flexible Lieferung
Sie können es entweder virtuell oder mit Hardware installieren.
Schnelle Installation
Nur 1 Stunde für die Einrichtung - und noch weniger für eine Testversion der E-Mail-Sicherheit.
Wählen Sie Ihre Reise
Testen Sie selbstlernende KI dort, wo Sie sie am meisten brauchen - in der Cloud, im Netzwerk oder für E-Mail.
Keine Verpflichtung
Voller Zugriff auf den Darktrace Threat Visualizer und drei maßgeschneiderte Bedrohungsberichte, ohne Kaufverpflichtung.
Vielen Dank! Ihre Anfrage ist eingegangen!
Huch! Beim Absenden des Formulars ist etwas schief gelaufen.