Blog

PREVENT

PREVENT Use Cases: Identifying High Impact Attack Paths

Standard-BlogbildStandard-BlogbildStandard-BlogbildStandard-BlogbildStandard-BlogbildStandard-Blogbild
22
Feb 2023
22
Feb 2023

What are the people, process and technology assets that would do the most harm, if compromised by an attacker?

Attack path modeling provides a detailed map of all the roads that lead to an organization's crown jewels, prioritized in order of likelihood and potential impact. CISO's are increasingly looking to this kind of solution to complement their security stack because it highlights risks that are specific to this organization's structure, as well as potentially unexpected relationships between devices or users that would prove catastrophic if they were exploited.  

What makes Darktrace's Attack Path Modeling solution stand out?

  • Data sources are varied and information from the entire digital estate is considered
  • Modeling is real-time and continuously re-evaluated
  • Output does not require expert technical knowledge to be leveraged
  • Valuable as a standalone for vulnerability prioritization
  • As a component of the Cyber AI Loop, the solution provides immediate value by feeding back into DETECT and RESPOND (e.g. tag critical assets for detection) but also provides long term systemic improvements as outcomes are followed up.

Thinking like an attacker

In 2023, CISOs will move beyond just insurance and checkbox compliance, as underwriters include more and more exclusions for certain types of cyber-attacks and the limits of compliance ticking the protection box rather than bolstering operational assurance become more apparent. They will push their teams to opt for more proactive cyber security measures to maximize ROI in the face of budget cuts, shifting investment into tools and capabilities that continuously improve their cyber resilience and demonstrate cyber risk reduction.

While red teams can provide insight into where effort and resource should be most immediately applied, the exercises themselves are often costly, non-exhaustive and infrequently run.

Hackers are constantly seeking pathways, preferably those of least resistance, to compromise a system by exploiting its vulnerabilities. Attack path modeling enables security teams to look at their environment from the perspective of the attacker. In turn, this helps them eliminate attack paths progressively, reducing the options an attacker would have, should they breach the walls.

A deeper dive into Attack Path Modeling

An attack path is a visual representation of the path that an attacker takes to exploit a weakness in the system. It highlights the series of steps (attack vectors) that a threat actor might take from one of the doors into the organization (attack surface) to access valuable assets.

It is typically unusual for an attacker to have a boulevard straight down to the crown jewels. They will most likely leverage a couple of loopholes, unexpected relationships and blind spots in the security stack to piece together a path to these confidential assets. Attack path modeling can help to highlight the attack vectors that connect, to form this path to compromise.  

Figure 1: Screengrabs from the Darktrace PREVENT/End-To-End user interface.

How to model attack paths

Darktrace's proprietary Self-Learning AI models relationships, and graph theory is incorporated to understand the importance of users, documents and relationships between these.

Darktrace PREVENT's Attack Path Modeling component identifies target nodes (users, accounts, devices), it then calculates the shortest paths to these target nodes and weights the results according to the likelihood of this attack path and the damage caused if the target asset was compromised. This is exactly what an attacker would do when planning an attack, albeit with a significant advantage to Darktrace PREVENT's AI Engine, which has access to more information than the attacker. For the first time, defenders have the upper hand against attackers.

Avoiding siloed efforts

According to a Gartner survey, 75% of organizations are looking at consolidating security tools, not primarily because of cost, but because it helps drive cyber risk reduction. Ensuring that security efforts are part of a wider security ecosystem, rather than siloed efforts, is crucial to maximize the return on these investments. Darktrace's Attack Path Modeling solution is a component of Darktrace PREVENT's End-to-End (E2E) offering.

Darktrace PREVENT integrates with Darktrace's DETECT and RESPOND to ensure that the organization's security posture is hardened, even if the team doesn't have time to eliminate the attack path.

Defensive superiority is key, and Attack Path Modeling is one way to help security teams gain back an advantage. Find out how you can test it in your own environment.

Attack Path Modeling is an objective, however, and there are a few important questions to consider when assessing the different methods of creating these models.

Are we considering all the relevant data when building my attack paths map?

Consider the case where one of your marketing executives has a close friendship with someone in your development team. How do you model that into your attack paths cartography? Attack paths encompass the full digital estate, so the attack path modeling solution should consider information from various parts, internal and external. This may include data from the Email environment, the Network, Endpoints, SaaS & Cloud, Active Directory, Vulnerability Scanners, etc.  

Cross-data analysis is the only way to understand holistic attack paths.

Are we looking at the most up to date map of attack paths?

Relationships between users, devices and other sensitive assets can evolve on a daily basis, this implies attack paths evolve on a daily basis. Ensuring that the methods or solutions used update their understanding continuously and in real-time is vital if security teams want the most up to date understanding of their organization's risk posture.

To improve our security posture, how do we know which attack paths to start with?

One thing is to map the sum-total of attack paths, another is to prioritize them. Attack path modeling gives you the map but adding a risk-assessment (explored in more depth below) layer on top is how you prioritize. This is where graph theory can be very useful to identify choke points that you may want to strengthen.  

Does this output yield actionable insights?

The prime objective of this solution is not simply to provide an assessment of cyber risk posture, but rather to help drive security efforts in the right direction. To that end, the output needs to be accessible to team members that may not have expert cyber skills. Lowering barriers to entry with usable insights and mitigation advice is key to successfully improve the organization's security posture.

Assessing risk to prioritize attack paths

Darktrace Attack Path Modeling (APM) is a risk-based approach to assessing cyber-attack pathways, thinking like an attacker, and probing the path of least resistance. 'Risk' in this case is defined as the product of two factors: Probability and Impact. By using this information to categorize possible attack paths in the risk matrix below, Darktrace's APM can prioritize attack paths to ensure security team efforts are spent on controlling for the most relevant risks for their organization.

Figure 2: Risk matrix for attack path prioritization

A: Defining Probability

There are two types of probability to consider:

The likelihood of one particular door being chosen by an attacker to infiltrate the organization (among the assets at the attack surface - this could be an internet-facing server, an inbox, a SaaS/Cloud account, etc). And,

The likelihood of one particular node (defined as a device or user account) being compromised next, via lateral movement.

Figure 3: Simplified example of calculating probability of lateral movement from a compromised agent to one of two servers

B Defining Impact

Impact refers to the overall impact of an asset being compromised and unusable. In the case of an asset (e.g.: a key server), the bigger the disruption if this asset goes down, the higher the impact score. If considering a particular document, restricted access and sensitivity score of users accessing it are some of the variables used to estimate impact.

Figure 4: Diagram showing a simplified example of mapping access volume and sensitivity to estimate document value.

Both variables are calculated by the AI autonomously, without requiring human input. Security teams can of course reinforce the AI's understanding of the organization with their business expertise (by tagging additional sensitive devices for example).

A more in-depth description of how impact is propagated to identify key servers or sensitive documents, as well as other components that comprise the Darktrace Attack Path Modeling module can be found in this white paper.

NEWSLETTER

Sie mögen das und wollen mehr?

Stay up to date on the latest industry news and insights.
Sie können sich jederzeit wieder abmelden. Datenschutzrichtlinie
EINBLICKE IN DAS SOC-Team
Darktrace Cyber-Analysten sind erstklassige Experten für Threat Intelligence, Threat Hunting und Incident Response. Sie bieten Tausenden von Darktrace Kunden auf der ganzen Welt rund um die Uhr SOC-Support. Einblicke in das SOC-Team wird ausschließlich von diesen Experten verfasst und bietet Analysen von Cyber-Vorfällen und Bedrohungstrends, die auf praktischen Erfahrungen in diesem Bereich basieren.
AUTOR
ÜBER DEN AUTOR
Elliot Stocker
Product SME

After 2 years in a commercial role helping to deploy Darktrace across a broad range of digital environments, Elliot currently occupies the role of Product Subject Matter Expert, where he helps to articulate the value of Darktrace’s technology to customers around the world. Elliot holds a Masters degree in Data Science and Machine Learning, using this knowledge to communicate concepts around machine learning and AI in an accessible way to different audiences.

share this article
ANWENDUNGSFÄLLE
COre-Abdeckung
Keine Artikel gefunden.

Blog

E-Mail

Darktrace/Email in Action: Why AI-Driven Email Security is the Best Defense Against Sustained Phishing Campaigns

Photo of man checking emails on laptopStandard-BlogbildStandard-Blogbild
26
Sep 2023

Stopping the bad while allowing the good

Since its inception, email has been regarded as one of the most important tools for businesses, revolutionizing communication and allowing global teams to become even more connected. But besides organizations heavily relying on email for their daily operations, threat actors have also recognized that the inbox is one of the easiest ways to establish an initial foothold on the network.

Today, not only are phishing campaigns and social engineering attacks becoming more prevalent, but the level of sophistication of these attacks are also increasing with the help of generative AI tools that allow for the creation of hyper-realistic emails with minimal errors, effectively lowering the barrier to entry for threat actors. These diverse and stealthy types of attacks evade traditional email security tools based on rules and signatures, because they are less likely to contain the low-sophistication markers of a typical phishing attack.  

In a situation where the sky is the limit for attackers and security teams are lean, how can teams equip themselves to tackle these threats? How can they accurately detect increasingly realistic malicious emails and neutralize these threats before it is too late? And importantly, how can email security block these threats while allowing legitimate emails to flow freely?

Instead of relying on past attack data, Darktrace’s Self-Learning AI detects the slightest deviation from a user’s pattern of life and responds autonomously to contain potential threats, stopping novel attacks in their tracks before damage is caused. It doesn’t define ‘good’ and ‘bad’ like traditional email tools, rather it understands each user and what is normal for them – and what’s not.

This blog outlines how Darktrace/Email™ used its understanding of ‘normal’ to accurately detect and respond to a sustained phishing campaign targeting a real-life company.

Responding to a sustained phishing attack

Over the course of 24 hours, Darktrace detected multiple emails containing different subjects, all from different senders to different recipients in one organization. These emails were sent from different IP addresses, but all came from the same autonomous system number (ASN).

Figure 1: The sender freemail addresses and subject lines all followed a certain format. The subject lines followed the format of “<First name> <Last name>”, possibly to induce curiosity. The senders were all freemail accounts and contained first names, last names and some numbers, showing the attempts to make these email addresses appear legitimate.

The emails themselves had many suspicious indicators. All senders had no prior association with the recipient, and the emails generated a high general inducement score. This score is generated by structural and non-specific content analysis of the email – a high score indicates that the email is trying to induce the recipient into taking a particular action, which may lead to account compromise.

Additionally, each email contained a visually prominent link to a file storage service, hidden behind a shortened bit.ly link. The similarities across all these emails pointed to a sustained campaign targeting the organization by a single threat actor.

Figure 2: One of the emails is shown above. Like all the other emails, it contained a highly suspicious and shortened link.
Figure 3: In another one of the emails, the link observed had similar characteristics. But this email stands out from the rest. The sender's name seems to be randomly set – the 3 alphabets are close to each other on the keyboard.

With all these suspicious indicators, many models were breached. This drove up the anomaly score, causing Darktrace/Email to hold all suspicious emails from the recipients’ inboxes, safeguarding the recipients from potential account compromise and disallowing the threats from taking hold in the network.

Imagining a phishing attack without Darktrace/Email

So what could have happened if Darktrace had not withheld these emails, and the recipients had clicked on the links? File storage sites have a wide variety of uses that allow attackers to be creative in their attack strategy. If the user had clicked on the shortened link, the possible consequences are numerous. The link could have led to a login page for unsuspecting victims to input their credentials, or it could have hosted malware that would automatically download if the link was clicked. With the compromised credentials, threat actors could even bypass MFA, change email rules, or gain privileged access to a network. The downloaded malware might also be a keylogger, leading to cryptojacking, or could open a back door for threat actors to return to at a later time.

Figure 4: Darktrace/Email highlights suspicious link characteristics and provides an option to preview the pages.
Figure 5: At the point of writing, both links could not be reached. This could be because they were one-time unique links created specifically for the user, and can no longer be accessed once the campaign has ceased.

The limits of traditional email security tools

Secure email gateways (SEGs) and static AI security tools may have found it challenging to detect this phishing campaign as malicious. While Darktrace was able to correlate these emails to determine that a sustained phishing campaign was taking place, the pattern among these emails is far too generic for specific rules as set in traditional security tools. If we take the characteristic of the freemail account sender as an example, setting a rule to block all emails from freemail accounts may lead to more legitimate emails being withheld, since these addresses have a variety of uses.

With these factors in mind, these emails could have easily slipped through traditional security filters and led to a devastating impact on the organization.

Schlussfolgerung

As threat actors step up their attacks in sophistication, prioritizing email security is more crucial than ever to preserving a safe digital environment. In response to these challenges, Darktrace/Email offers a set-and-forget solution that continuously learns and adapts to changes in the organization.  

Through an evolving understanding of every environment in which it is deployed, its threat response becomes increasingly precise in neutralizing only the bad, while allowing the good – delivering email security that doesn’t come at the expense of business growth.

Continue reading
About the author

Blog

Einblicke in das SOC-Team

Black Basta: Old Dogs with New Tricks

Standard-BlogbildStandard-Blogbild
21
Sep 2023

What is Black Basta?

Over the past year, security researchers have been tracking a new ransomware group, known as Black Basta, that has been observed targeted organizations worldwide to deploy double extortion ransomware attacks since early 2022. While the strain and group are purportedly new, evidence seen suggests they are an offshoot of the Conti ransomware group [1].

The group behind Black Basta run a Ransomware as a Service (RaaS) model. They work with initial access brokers who will typically already have a foothold in company infrastructure to begin their attacks. Once inside a network, they then pivot internally using numerous tools to further their attack.

Black Basta Ransomware

Like many other ransomware actors, Black Basta uses double extortion as part of its modus operandi, exfiltrating sensitive company data and using the publication of this as a second threat to affected companies. This is also advertised on a dark web site, setup by the group to apply further pressure for affected companies to make ransom payments and avoid reputational damage.

The group also seems to regularly take advantage of existing tools to undertake the earlier stages of their attacks. Notably, the Qakbot banking trojan, seems to be the malware often used to gain an initial foothold within compromised environments.

Analysis of the tools, procedures and infrastructure used by Black Basta belies a maturity to the actors behind the ransomware. Their models and practices suggest those involved are experienced individuals, and security researchers have drawn possible links to the Conti ransomware group.

As such, Black Basta is a particular concern for security teams as attacks will likely be more sophisticated, with attackers more patient and able to lie low on digital estates for longer, waiting for the opportune moment to strike.

Cyber security is an infinite game where defender and attacker are stuck as cat and mouse; as new attacks evolve, security vendors and teams respond to the new indicators of compromise (IoCs), and update their existing rulesets and lists. As a result, attackers are forced to change their stripes to evade detection or sometimes even readjust their targets and end goals.

Anomaly Based Detection

By using the power of Darktrace’s Self-Learning AI, security teams are able to detect deviations in behavior. Threat actors need to move through the kill chain to achieve their aims, and in doing so will cause affected devices within networks to deviate from their expected pattern of life. Darktrace’s anomaly-based approach to threat detection allows it recognize these subtle deviations that indicate the presence of an attacker, and stop them in their tracks.

Additionally, the ecosystem of cyber criminals has matured in the last few decades. It is well documented how many groups now operate akin to legitimate companies, with structure, departments and governance. As such, while new attack methods and tactics do appear in the wild, the maturity in their business models belie the experience of those behind the attack.

As attackers grow their business models and develop their arsenal of attack vectors, it becomes even more critical for security teams to remain vigilant to anomalies within networks, and remain agnostic to underlying IoCs and instead adopt anomaly detection tools able to identify tactics, techniques, and procedures (TTPs) that indicate attackers may be moving through a network, ahead of deployment of ransomware and data encryption.

Darktrace’s Coverage of Black Basta

In April 2023, the Darktrace Security Operations Center (SOC) assisted a customer in triaging and responding to an ongoing ransomware infection on their network. On a Saturday, the customer reached out directly to the Darktrace analyst team via the Ask the Expert service for support after they observed encrypted files and locked administrative accounts on their network. The analyst team were able to investigate and clarify the attack path, identifying affected devices and assisting the customer with their remediation. Darktrace DETECT™ observed varying IoCs and TTPs throughout the course of this attack’s kill chain; subsequent analysis into these indicators revealed this had likely been a case of Black Basta seen in the wild.

Erstes Eindringen

The methods used by the  group to gain an initial foothold in environments varies – sometimes using phishing, sometimes gaining access through a common vulnerability exposed to the internet. Black Basta actors appear to target specific organizations, as opposed to some groups who aim to hit multiple at once in a more opportunistic fashion.

In the case of the Darktrace customer likely affected by Black Basta, it is probable that the initial intrusion was out of scope. It may be that the path was via a phishing email containing an Microsoft Excel spreadsheet that launches malicious powershell commands; a noted technique for Black Basta. [3][4]  Alternatively, the group may have worked with access brokers who already had a foothold within the customer’s network.

One particular device on the network was observed acting anomalously and was possibly the first to be infected. The device attempted to connect to multiple internal devices over SMB, and connected to a server that was later found to be compromised and is described throughout the course of this blog. During this connection, it wrote a file over SMB, “syncro.exe”, which is possibly a legitimate Remote Management software but could in theory be used to spread an infection laterally. Use of this tool otherwise appears sporadic for the network, and was notably unusual for the environment.

Given these timings, it is possible this activity is related to the likely Black Basta compromise. However, there is some evidence online that use of Syncro has been seen installed as part of the execution of loaders such as Batloader, potentially indicating a separate or concurrent attack [5].

Internal Reconnaissance + Lateral Movement

However the attackers gained access in this instance, the first suspicious activity observed by Darktrace originated from an infected server. The attacker used their foothold in the device to perform internal reconnaissance, enumerating large portions of the network. Darktrace DETECT’s anomaly detection noted a distinct rise in connections to a large number of subnets, particularly to closed ports associated with native Windows services, including:

  • 135 (RPC)
  • 139 (NetBIOS)
  • 445 (SMB)
  • 3389 (RDP)

During the enumeration, SMB connections were observed during which suspiciously named executable files were written:

  • delete.me
  • covet.me

Data Staging and Exfiltration

Around 4 hours after the scanning activity, the attackers used their knowledge gained during enumeration about the environment to begin gathering and staging data for their double extortion attempts. Darktrace observed the same infected server connecting to a file storage server, and downloading over 300 GiB of data. Darktrace DETECT identified that the connections had been made via SMB and was able to present a list of filenames to the customer, allowing their security team to determine the data that had likely been exposed to the attackers.

The SMB paths detected by Darktrace showed a range of departments’ file areas being accessed by threat actors. This suggests they were interested in getting as much varied data as possible, presumably in an attempt to ensure a large amount of valuable information was at their disposal to make any threats of releasing them more credible, and more damaging to the company.

Shortly after the download, the device made an external connection over SSH to a rare domain, dataspt[.]com, hosted in the United States. The connection itself was made over an unusual port, 2022, and Darktrace recognized that the domain was new for the network.

During this upload, the threat actors uploaded a similar volume of data to the 300GiB that had been downloaded internally earlier. Darktrace flagged the usual elements of this external upload, making the identification and triage of this exfiltration attempt easier for the customer.

On top of this, Darktrace’s autonomous investigation tool Cyber AI Analyst™ launched an investigation into this on-going activity and was able to link the external upload events to the internal download, identifying them as one exfiltration incident rather than two isolated events. AI Analyst then provided a detailed summary of the activity detected, further speeding up the identification of affected files.

Preparing for Exploitation

All the activity documented so far had occurred on a Wednesday evening. It was at this point that the burst of activity calmed, and the ransomware lay in wait within the environment. Other devices around the network, particularly those connected to by the original infected server and a domain controller, were observed performing some elements of anomalous activity, but the attack seemed to largely take a pause.

However, on the Saturday morning, 3 days later, the compromised server began to change the way it communicated with attackers by reaching out to a new command and control (C2) endpoint. It seemed that attackers were gearing up for their attack, taking advantage of the weekend to strike while security teams often run with a reduced staffing.

Darktrace identified connections to a new endpoint within 4 minutes of it first being seen on the customer’s environment. The server had begun making repeated SSL connections to the new external endpoint, faceappinc[.]com, which has been flagged as malicious by various open-source intelligence (OSINT) sources.

The observed JA3 hash (d0ec4b50a944b182fc10ff51f883ccf7) suggests that the command-line tool BITS Admin was being used to launch these connections, another suggestion of the use of mature tooling.

In addition to this, Darktrace also detected the server using an administrative credential it had never previously been associated with. Darktrace recognized that the use of this credential represented a deviation from the device’s usual activity and thus could be indicative of compromise.

The server then proceeded to use the new credential to authenticate over Keberos before writing a malicious file (“management.exe”) to the Temp directory on a number of internal devices.

Encryption

At this point, the number of anomalous activities detected from the server increased massively as the attacker seems to connect networkwide in an attempt to cause as quick and destructive an encryption effort as possible. Darktrace observed numerous files that had been encrypted by a local process. The compromised server began to write ransom notes, named “instructions_read_me.txt” to other file servers, which presumably also had successfully deployed payloads. While Black Basta actors had initially been observed dropping ransom notes named “readme.txt”, security researchers have since observed and reported an updated variant of the ransomware that drops “instructions_read_me_.txt”, the name of the file detected by Darktrace, instead [6].

Another server was also observed making repeated SSL connections to the same rare external endpoint, faceappinc[.]com. Shortly after beginning these connections, the device made an HTTP connection to a rare IP address with no hostname, 212.118.55[.]211. During this connection, the device also downloaded a suspicious executable file, cal[.]linux. OSINT research linked the hash of this file to a Black Basta Executable and Linkable File (ELF) variant, indicating that the group was highly likely behind this ransomware attack.

Of particular interest again, is how the attacker lives off the land, utilizing pre-installed Windows services. Darktrace flagged that the server was observed using PsExec, a remote management executable, on multiple devices.

Darktrace Assistance

Darktrace DETECT was able to clearly detect and provide visibility over all stages of the ransomware attack, alerting the customer with multiple model breaches and AI Analyst investigation(s) and highlighting suspicious activity throughout the course of the attack.

For example, the exfiltration of sensitive data was flagged for a number of anomalous features of the meta-data: volume; rarity of the endpoint; port and protocol used.

In total, the portion of the attack observed by Darktrace lasted about 4 days from the first model breach until the ransomware was deployed. In particular, the encryption itself was initiated on a Saturday.

The encryption event itself was initiated on a Saturday, which is not uncommon as threat actors tend to launch their destructive attacks when they expect security teams will be at their lowest capacity. The Darktrace SOC team regularly observes and assists in customer’s in the face of ransomware actors who patiently lie in wait. Attackers often choose to strike as security teams run on reduced hours of manpower, sometimes even choosing to deploy ahead of longer breaks for national or public holidays, for example.

In this case, the customer contacted Darktrace directly through the Ask the Expert (ATE) service. ATE offers customers around the clock access to Darktrace’s team of expert analysts. Customers who subscribe to ATE are able to send queries directly to the analyst team if they are in need of assistance in the face of suspicious network activity or emerging attacks.

In this example, Darktrace’s team of expert analysts worked in tandem with Cyber AI Analyst to investigate the ongoing compromise, ensuring that the investigation and response process were completed as quickly and efficiently as possible.

Thanks to Darktrace’s Self-Learning AI, the analyst team were able to quickly produce a detailed report enumerating the timeline of events. By combining the human expertise of the analyst team and the machine learning capabilities of AI Analyst, Darktrace was able to quickly identify anomalous activity being performed and the affected devices. AI Analyst was then able to collate and present this information into a comprehensive and digestible report for the customer to consult.

Schlussfolgerung

It is likely that this ransomware attack was undertaken by the Black Basta group, or at least using tools related to their method. Although Black Basta itself is a relatively novel ransomware strain, there is a maturity and sophistication to its tactics. This indicates that this new group are actually experienced threat actors, with evidence pointing towards it being an offshoot of Conti.

The Pyramid of Pain is a well trodden model in cyber security, but it can help us understand the various features of an attack. Indicators like static C2 destinations or file hashes can easily be changed, but it’s the underlying TTPs that remain the same between attacks.

In this case, the attackers used living off the land techniques, making use of tools such as BITSAdmin, as well as using tried and tested malware such as Qakbot. While the domains and IPs involved will change, the way these malware interact and move about systems remains the same. Their fingerprint therefore causes very similar anomalies in network traffic, and this is where the strength of Darktrace lies.

Darktrace’s anomaly-based approach to threat detection means that these new attack types are quickly drawn out of the noise of everyday traffic within an environment. Once attackers have gained a foothold in a network, they will have to cause deviation from the usual pattern of a life on a network to proceed; Darktrace is uniquely placed to detect even the most subtle changes in a device’s behavior that could be indicative of an emerging threat.

Machine learning can act as a force multiplier for security teams. Working hand in hand with the Darktrace SOC, the customer was able to generate cohesive and comprehensive reporting on the attack path within days. This would be a feat for humans alone, requiring significant resources and time, but with the power of Darktrace’s Self-Learning AI, these deep and complex analyses become as easy as the click of a button.

Credit to: Matthew John, Director of Operations, SOC, Paul Jennings, Principal Analyst Consultant

Appendices

Darktrace DETECT Model Breaches

Internal Reconnaissance

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Device / Network Scan

Device / Anomalous RDP Followed by Multiple Model Breaches

Device / Possible SMB/NTLM Reconnaissance

Device / SMB Lateral Movement

Anomalous Connection / SMB Enumeration

Anomalous Connection / Possible Share Enumeration Activity

Device / Suspicious SMB Scanning Activity

Device / RDP Scan

Anomalous Connection / Active Remote Desktop Tunnel

Device / Increase in New RPC Services

Device / ICMP Address Scan

Download and Upload

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Download and Upload

Compliance / SSH to Rare External Destination

Anomalous Server Activity / Rare External from Server

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous Connection / Multiple Connections to New External TCP Port

Device / Anomalous SMB Followed By Multiple Model Breaches

Unusual Activity / SMB Access Failures

Lateral Movement and Encryption

User / New Admin Credentials on Server

Compliance / SMB Drive Write

Device / Anomalous RDP Followed By Multiple Model Breaches

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous Connection / New or Uncommon Service Control

Device / New or Unusual Remote Command Execution

Anomalous Connection / SMB Enumeration

Additional Beaconing and Tooling

Device / Initial Breach Chain Compromise

Device / Multiple C2 Model Breaches

Compromise / Large Number of Suspicious Failed Connections

Compromise / Sustained SSL or HTTP Increase

Compromise / SSL or HTTP Beacon

Compromise / Suspicious Beaconing Behavior

Compromise / Large Number of Suspicious Successful Connections

Compromise / High Volume of Connections with Beacon Score

Compromise / Slow Beaconing Activity To External Rare

Compromise / SSL Beaconing to Rare Destination

Compromise / Beaconing Activity To External Rare

Compromise / Beacon to Young Endpoint

Compromise / Agent Beacon to New Endpoint

Anomalous Server Activity / Rare External from Server

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Anomalous File / EXE from Rare External Location

IoC - Type - Description + Confidence

dataspt[.]com - Hostname - Highly Likely Exfiltration Server

46.22.211[.]151:2022 - IP Address and Unusual Port - Highly Likely Exfiltration Server

faceappinc[.]com - Hostname - Likely C2 Infrastructure

Instructions_read_me.txt - Filename - Almost Certain Ransom Note

212.118.55[.]211 - IP Address - Likely C2 Infrastructure

delete[.]me - Filename - Potential lateral movement script

covet[.]me - Filename - Potential lateral movement script

d0ec4b50a944b182fc10ff51f883ccf7 - JA3 Client Fingerprint - Potential Windows BITS C2 Process

/download/cal.linux - URI - Likely BlackBasta executable file

1f4dcfa562f218fcd793c1c384c3006e460213a8 - Sha1 File Hash - Likely BlackBasta executable file

References

[1] https://blogs.blackberry.com/en/2022/05/black-basta-rebrand-of-conti-or-something-new

[2] https://www.cybereason.com/blog/threat-alert-aggressive-qakbot-campaign-and-the-black-basta-ransomware-group-targeting-u.s.-companies

[3] https://www.trendmicro.com/en_us/research/22/e/examining-the-black-basta-ransomwares-infection-routine.html

[4] https://unit42.paloaltonetworks.com/atoms/blackbasta-ransomware/

[5] https://www.trendmicro.com/en_gb/research/23/a/batloader-malware-abuses-legitimate-tools-uses-obfuscated-javasc.html

[6] https://www.pcrisk.com/removal-guides/23666-black-basta-ransomware

Continue reading
About the author
Matthew John
Director of Operations, SOC

Gute Nachrichten für Ihr Unternehmen.
Schlechte Nachrichten für die Bösewichte.

Starten Sie Ihren kostenlosen Test

Starten Sie Ihren kostenlosen Test

Flexible Lieferung
Cloud-based deployment.
Schnelle Installation
Nur 1 Stunde für die Einrichtung - und noch weniger für eine Testversion der E-Mail-Sicherheit.
Wählen Sie Ihre Reise
Testen Sie selbstlernende KI dort, wo Sie sie am meisten brauchen - in der Cloud, im Netzwerk oder für E-Mail.
Keine Verpflichtung
Voller Zugriff auf den Darktrace Threat Visualizer und drei maßgeschneiderte Bedrohungsberichte, ohne Kaufverpflichtung.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Huch! Beim Absenden des Formulars ist etwas schief gelaufen.

Demo anfordern

Flexible Lieferung
Sie können es entweder virtuell oder mit Hardware installieren.
Schnelle Installation
Nur 1 Stunde für die Einrichtung - und noch weniger für eine Testversion der E-Mail-Sicherheit.
Wählen Sie Ihre Reise
Testen Sie selbstlernende KI dort, wo Sie sie am meisten brauchen - in der Cloud, im Netzwerk oder für E-Mail.
Keine Verpflichtung
Voller Zugriff auf den Darktrace Threat Visualizer und drei maßgeschneiderte Bedrohungsberichte, ohne Kaufverpflichtung.
Vielen Dank! Ihre Anfrage ist eingegangen!
Huch! Beim Absenden des Formulars ist etwas schief gelaufen.