Blog

Einblicke in das SOC-Team

Revealing ViperSoftX Intrusion: Detecting Malware

Standard-BlogbildStandard-BlogbildStandard-BlogbildStandard-BlogbildStandard-BlogbildStandard-Blogbild
03
Oct 2023
03
Oct 2023
Read how Darktrace effectively detects and responds to ViperSoftX malware across their customer base, even with its advanced evasion tactics. Learn more.

Fighting Info-Stealing Malware

The escalating threat posed by information-stealing malware designed to harvest and steal the sensitive data of individuals and organizations alike has become a paramount concern for security teams across the threat landscape. In direct response to security teams improving their threat detection and prevention capabilities, threat actors are forced to continually adapt and advance their techniques, striving for greater sophistication to ensure they can achieve the malicious goals.

What is ViperSoftX?

ViperSoftX is an information stealer and Remote Access Trojan (RAT) malware known to steal privileged information such as cryptocurrency wallet addresses and password information stored in browsers and password managers. It is commonly distributed via the download of cracked software from multiple sources such as suspicious domains, torrent downloads, and key generators (keygens) from third-party sites.

ViperSoftX was first observed in the wild in 2020 [1] but more recently, new strains were identified in 2022 and 2023 utilizing more sophisticated detection evasion techniques, making it more difficult for security teams to identify and analyze. This includes using more advanced encryption methods alongside monthly changes to command-and-control servers (C2) [2], using dynamic-link library (DLL) sideloading for execution techiques, and subsequently loading a malicious browser extension upon infection which works as an independent info-stealer named VenomSoftX [3].

Between February and June 2023, Darktrace detected activity related to the VipersoftX and VenomSoftX information stealers on the networks of more than 100 customers across its fleet. Darktrace DETECT™ was able to successfully identify the anomalous network activity surrounding these emerging information stealer infections and bring them to the attention of the customers, while Darktrace RESPOND™, when enabled in autonomous response mode, was able to quickly intervene and shut down malicious downloads and data exfiltration attempts.

ViperSoftX Attack & Darktrace Coverage

In cases of ViperSoftX information stealer activity observed by Darktrace, the initial infection was caused through the download of malicious files from multimedia sites, endpoints of cracked software like Adobe Illustrator, and torrent sites. Endpoint users typically unknowingly download the malware from these endpoints with a sideloaded DLL, posing as legitimate software executables.

Darktrace detected multiple downloads from such multimedia sites and endpoints related to cracked software and BitTorrent, which were likely representative of the initial source of ViperSoftX infection. Darktrace DETECT models such as ‘Anomalous File / Anomalous Octet Stream (No User Agent)’ breached in response to this activity and were brought to the immediate attention of customer security teams. In instances where Darktrace RESPOND was configured in autonomous response mode, Darktrace was able to enforce a pattern of life on offending devices, preventing them from downloading malicious files.  This ensures that devices are limited to conducting only their pre-established expected activit, minimizing disruption to the business whilst targetedly mitigating suspicious file downloads.

The downloads are then extracted, decrypted and begin to run on the device. The now compromised device will then proceed to make external connections to C2 servers to retrieve secondary PowerShell executable. Darktrace identified that infected devices using PowerShell user agents whilst making HTTP GET requests to domain generation algorithm (DGA) ViperSoftX domains represented new, and therefore unusual, activity in a large number of cases.

For example, Darktrace detected one customer device making an HTTP GET request to the endpoint ‘chatgigi2[.]com’, using the PowerShell user agent ‘Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.19041.2364’. This new activity triggered a number of DETECT models, including ‘Anomalous Connection / PowerShell to Rare External’ and ‘Device / New PowerShell User Agent’. Repeated connections to these endpoints also triggered C2 beaconing models including:  

  • Compromise / Agent Beacon (Short Period)
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Long Period)
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / SSL or HTTP Beacon

Although a large number of different DGA domains were detected, commonalities in URI formats were seen across affected customers which matched formats previously identified as ViperSoftX C2 communication by open-source intelligence (OSINT), and in other Darktrace investigations.  

URI paths for example, were always of the format /api/, /api/v1/, /v2/, or /v3/, appearing to detail version number, as can be seen in Figure 1.

Figure 1: A Packet Capture (PCAP) taken from Darktrace showing a connection made to a ViperSoftX C2 endpoint containing versioning information, consistent with ViperSoftX pattern of communication.  

Before the secondary PowerShell executables are loaded, ViperSoftX takes a digital fingerprint of the infected machine to gather its configuration details, and exfiltrates them to the C2 server. These include the computer name, username, Operating System (OS), and ensures there are no anti-virus or montoring tools on the device. If no security tool are detected, ViperSoftX then downloads, decrypts and executes the PowerShell file.

Following the GET requests Darktrace observed numerous devices performing HTTP POST requests and beaconing connections to ViperSoftX endpoints with varying globally unique identifiers (GUIDs) within the URIs. These connections represented the exfiltration of device configuration details, such as “anti-virus detected”, “app used”, and “device name”. As seen on another customer’s deployment, this caused the model ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’ to breach, which was also detected by Cyber AI Analyst as seen in Figure 2.

Figure 2: Cyber AI Analyst’s detection of HTTP POSTs being made to apibiling[.]com, a ViperSoftX C2 endpoint.

The malicious PowerShell download then crawls the infected device’s systems and directories looking for any cryptocurrency wallet information and password managers, and exfiltrates harvest data to the C2 infrastructure. The C2 server then provides further browser extensions to Chromium browsers to be downloaded and act as a separate stand-alone information stealer, also known as VenomSoftX.

Similar to the initial download of ViperSoftX, these malicious extensions are disguised as legitimate browser extensions to evade the detection of security teams. VenomSoft X, in turn, searches through and attempts to gather sensitive data from password managers and crypto wallets stored in user browsers. Using this information, VenomSoftX is able to redirect crypocurrency transactions by intercepting and manipulating API requests between the sender and the intended recipient, directing the cryptocurrency to the attacker instead [3].

Following investigation into VipersoftX activity across the customer base, Darktrace notified all affected customers and opened Ask the Expert (ATE) tickets through which customer’s could directly contact the analyst team for support and guidance in the face on the information stealer infection.

How did the attack bypass the rest of the security stack?

As previously mentioned, both the initial download of ViperSoftX and the subsequent download of the VenomX browser extension are disguised as legitimate software or browser downloads. This is a common technique employed by threat actors to infect target devices with malicious software, while going unnoticed by security teams traditional security measures. Furthermore, by masquerading as a legitimate piece of software endpoint users are more likely to trust and therefore download the malware, increasing the likelihood of threat actor’s successfully carrying out their objectives. Additionally, post-infection analysis of shellcode, the executable code used as the payload, is made significantly more difficult by VenomSoftX’s use of bytemapping. Bytemapping prevents the encryption of shellcodes without its corresponding byte map, meaning that the payloads cannot easily be decrypted and analysed by security researchers. [3]

ViperSoftX also takes numerous attempts to prevent their C2 infrastructure from being identified by blocking access to it on browsers, and using multiple DGA domains, thus renderring defunct traditional security measures that rely on threat intelligence and static lists of indicators of compromise (IoCs).

Fortunately for Darktrace customers, Darktrace’s anomaly-based approach to threat detection means that it was able to detect and alert customers to this suspicious activity that may have gone unnoticed by other security tools.

Insights/Conclusion

Faced with the challenge of increasingly competent and capable security teams, malicious actors are having to adopt more sophisticated techniques to successfully compromise target systems and achieve their nefarious goals.

ViperSoftX information stealer makes use of numerous tactics, techniques and procedures (TTPs) designed to fly under the radar and carry out their objectives without being detected. ViperSoftX does not rely on just one information stealing malware, but two with the subsequent injection of the VenomSoftX browser extension, adding an additional layer of sophistication to the informational stealing operation and increasing the potential yield of sensitive data. Furthermore, the use of evasion techniques like disguising malicious file downloads as legitimate software and frequently changing DGA domains means that ViperSoftX is well equipped to infiltrate target systems and exfiltrate confidential information without being detected.

However, the anomaly-based detection capabilities of Darktrace DETECT allows it to identify subtle changes in a device’s behavior, that could be indicative of an emerging compromise, and bring it to the customer’s security team. Darktrace RESPOND is then autonomously able to take action against suspicious activity and shut it down without latency, minimizing disruption to the business and preventing potentially significant financial losses.

Credit to: Zoe Tilsiter, Senior Cyber Analyst, Nathan Lorenzo, Cyber Analyst.

Appendices

References

[1] https://www.fortinet.com/blog/threat-research/vipersoftx-new-javascript-threat

[2] https://www.trendmicro.com/en_us/research/23/d/vipersoftx-updates-encryption-steals-data.html

[3] https://decoded.avast.io/janrubin/vipersoftx-hiding-in-system-logs-and-spreading-venomsoftx/

Darktrace DETECT Model Detections

·       Anomalous File / Anomalous Octet Stream (No User Agent)

·       Anomalous Connection / PowerShell to Rare External

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Connection / Lots of New Connections

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint

·       Anomalous Server Activity / Outgoing from Server

·       Compromise / Large DNS Volume for Suspicious Domain

·       Compromise / Quick and Regular Windows HTTP Beaconing

·       Compromise / Beacon for 4 Days

·       Compromise / Suspicious Beaconing Behaviour

·       Compromise / Large Number of Suspicious Failed Connections

·       Compromise / Large Number of Suspicious Successful Connections

·       Compromise / POST and Beacon to Rare External

·       Compromise / DGA Beacon

·       Compromise / Agent Beacon (Long Period)

·       Compromise / Agent Beacon (Medium Period)

·       Compromise / Agent Beacon (Short Period)

·       Compromise / Fast Beaconing to DGA

·       Compromise / SSL or HTTP Beacon

·       Compromise / Slow Beaconing Activity To External Rare

·       Compromise / Beaconing Activity To External Rare

·       Compromise / Excessive Posts to Root

·       Compromise / Connections with Suspicious DNS

·       Compromise / HTTP Beaconing to Rare Destination

·       Compromise / High Volume of Connections with Beacon Score

·       Compromise / Sustained SSL or HTTP Increase

·       Device / New PowerShell User Agent

·       Device / New User Agent and New IP

Darktrace RESPOND Model Detections

·       Antigena / Network / External Threat / Antigena Suspicious File Block

·       Antigena / Network / External Threat / Antigena File then New Outbound Block

·       Antigena / Network / External Threat / Antigena Watched Domain Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

·       Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

·       Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

·       Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

List of IoCs

Indicator - Type - Description

ahoravideo-blog[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-blog[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-cdn[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-chat[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-chat[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-endpoint[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

apibilng[.]com - Hostname - ViperSoftX C2 endpoint

arrowlchat[.]com - Hostname - ViperSoftX C2 endpoint

bideo-blog[.]com - Hostname - ViperSoftX C2 endpoint

bideo-blog[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-cdn[.]com - Hostname - ViperSoftX C2 endpoint

bideo-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-chat[.]com - Hostname - ViperSoftX C2 endpoint

bideo-chat[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-endpoint[.]com - Hostname - ViperSoftX C2 endpoint

bideo-endpoint[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

chatgigi2[.]com - Hostname - ViperSoftX C2 endpoint

counter[.]wmail-service[.]com - Hostname - ViperSoftX C2 endpoint

fairu-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

fairu-chat[.]xyz - Hostname - ViperSoftX C2 endpoint

fairu-endpoint[.]com - Hostname - ViperSoftX C2 endpoint

fairu-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

fairu-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-blog[.]com - Hostname - ViperSoftX C2 endpoint

privatproxy-blog[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-cdn[.]com - Hostname - ViperSoftX C2 endpoint

privatproxy-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-endpoint[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

privatproxy-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

static-cdn-349[.]net - Hostname - ViperSoftX C2 endpoint

wmail-blog[.]com - Hostname - ViperSoftX C2 endpoint

wmail-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

wmail-chat[.]com - Hostname - ViperSoftX C2 endpoint

wmail-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

wmail-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.19041.2364 - User Agent -PowerShell User Agent

MITRE ATT&CK Mapping

Tactic - Technique - Notes

Command and Control - T1568.002 Dynamic Resolution: Domain Generation Algorithms

Command and Control - T1321 Data Encoding

Credential Access - T1555.005 Credentials from Password Stores: Password Managers

Defense Evasion - T1027 Obfuscated Files or Information

Execution - T1059.001 Command and Scripting Interpreter: PowerShell

Execution - T1204 User Execution T1204.002 Malicious File

Persistence - T1176 Browser Extensions - VenomSoftX specific

Persistence, Privilege Escalation, Defense Evasion - T1574.002 Hijack Execution Flow: DLL Side-Loading

EINBLICKE IN DAS SOC-Team
Darktrace Cyber-Analysten sind erstklassige Experten für Threat Intelligence, Threat Hunting und Incident Response. Sie bieten Tausenden von Darktrace Kunden auf der ganzen Welt rund um die Uhr SOC-Support. Einblicke in das SOC-Team wird ausschließlich von diesen Experten verfasst und bietet Analysen von Cyber-Vorfällen und Bedrohungstrends, die auf praktischen Erfahrungen in diesem Bereich basieren.
AUTOR
ÜBER DEN AUTOR
Zoe Tilsiter
Cyber Analyst
Book a 1-1 meeting with one of our experts
share this article
ANWENDUNGSFÄLLE
Keine Artikel gefunden.
COre-Abdeckung
Keine Artikel gefunden.

More in this series

Keine Artikel gefunden.

Blog

E-Mail

How to Protect your Organization Against Microsoft Teams Phishing Attacks

Standard-BlogbildStandard-Blogbild
21
May 2024

The problem: Microsoft Teams phishing attacks are on the rise

Around 83% of Fortune 500 companies rely on Microsoft Office products and services1, with Microsoft Teams and Microsoft SharePoint in particular emerging as critical platforms to the business operations of the everyday workplace. Researchers across the threat landscape have begun to observe these legitimate services being leveraged more and more by malicious actors as an initial access method.

As Teams becomes a more prominent feature of the workplace many employees rely on it for daily internal and external communication, even surpassing email usage in some organizations. As Microsoft2 states, "Teams changes your relationship with email. When your whole group is working in Teams, it means you'll all get fewer emails. And you'll spend less time in your inbox, because you'll use Teams for more of your conversations."

However, Teams can be exploited to send targeted phishing messages to individuals either internally or externally, while appearing legitimate and safe. Users might receive an external message request from a Teams account claiming to be an IT support service or otherwise affiliated with the organization. Once a user has accepted, the threat actor can launch a social engineering campaign or deliver a malicious payload. As a primarily internal tool there is naturally less training and security awareness around Teams – due to the nature of the channel it is assumed to be a trusted source, meaning that social engineering is already one step ahead.

Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)
Figure 1: Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)

Microsoft Teams Phishing Examples

Microsoft has identified several major phishing attacks using Teams within the past year.

In July 2023, Microsoft announced that the threat actor known as Midnight Blizzard – identified by the United States as a Russian state-sponsored group – had launched a series of phishing campaigns via Teams with the aim of stealing user credentials. These attacks used previously compromised Microsoft 365 accounts and set up new domain names that impersonated legitimate IT support organizations. The threat actors then used social engineering tactics to trick targeted users into sharing their credentials via Teams, enabling them to access sensitive data.  

At a similar time, threat actor Storm-0324 was observed sending phishing lures via Teams containing links to malicious SharePoint-hosted files. The group targeted organizations that allow Teams users to interact and share files externally. Storm-0324’s goal is to gain initial access to hand over to other threat actors to pursue more dangerous follow-on attacks like ransomware.

For a more in depth look at how Darktrace stops Microsoft Teams phishing read our blog: Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

The market: Existing Microsoft Teams security solutions are insufficient

Microsoft’s native Teams security focuses on payloads, namely links and attachments, as the principal malicious component of any phishing. These payloads are relatively straightforward to detect with their experience in anti-virus, sandboxing, and IOCs. However, this approach is unable to intervene before the stage at which payloads are delivered, before the user even gets the chance to accept or deny an external message request. At the same time, it risks missing more subtle threats that don’t include attachments or links – like early stage phishing, which is pure social engineering – or completely new payloads.

Equally, the market offering for Teams security is limited. Security solutions available on the market are always payload-focused, rather than taking into account the content and context in which a link or attachment is sent. Answering questions like:

  • Does it make sense for these two accounts to speak to each other?
  • Are there any linguistic indicators of inducement?

Furthermore, they do not correlate with email to track threats across multiple communication environments which could signal a wider campaign. Effectively, other market solutions aren’t adding extra value – they are protecting against the same types of threats that Microsoft is already covering by default.

The other aspect of Teams security that native and market solutions fail to address is the account itself. As well as focusing on Teams threats, it’s important to analyze messages to understand the normal mode of communication for a user, and spot when a user’s Teams activity might signal account takeover.

The solution: How Darktrace protects Microsoft Teams against sophisticated threats

With its biggest update to Darktrace/Email ever, Darktrace now offers support for Microsoft Teams. With that, we are bringing the same AI philosophy that protects your email and accounts to your messaging environment.  

Our Self-Learning AI looks at content and context for every communication, whether that’s sent in an email or Teams message. It looks at actual user behavior, including language patterns, relationship history of sender and recipient, tone and payloads, to understand if a message poses a threat. This approach allows Darktrace to detect threats such as social engineering and payloadless attacks using visibility and forensic capabilities that Microsoft security doesn’t currently offer, as well as early symptoms of account compromise.  

Unlike market solutions, Darktrace doesn’t offer a siloed approach to Teams security. Data and signals from Teams are shared across email to inform detection, and also with the wider Darktrace ActiveAI security platform. By correlating information from email and Teams with network and apps security, Darktrace is able to better identify suspicious Teams activity and vice versa.  

Interested in the other ways Darktrace/Email augments threat detection? Read our latest blog on how improving the quality of end-user reporting can decrease the burden on the SOC. To find our more about Darktrace's enduring partnership with Microsoft, click here.

References

[1] Essential Microsoft Office Statistics in 2024

[2] Microsoft blog, Microsoft Teams and email, living in harmony, 2024

Continue reading
About the author
Carlos Gray
Product Manager

Blog

Einblicke in das SOC-Team

Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

Standard-BlogbildStandard-Blogbild
20
May 2024

Social Engineering in Phishing Attacks

Faced with increasingly cyber-aware endpoint users and vigilant security teams, more and more threat actors are forced to think psychologically about the individuals they are targeting with their phishing attacks. Social engineering methods like taking advantage of the human emotions of their would-be victims, pressuring them to open emails or follow links or face financial or legal repercussions, and impersonating known and trusted brands or services, have become common place in phishing campaigns in recent years.

Phishing with Microsoft Teams

The malicious use of the popular communications platform Microsoft Teams has become widely observed and discussed across the threat landscape, with many organizations adopting it as their primary means of business communication, and many threat actors using it as an attack vector. As Teams allows users to communicate with people outside of their organization by default [1], it becomes an easy entry point for potential attackers to use as a social engineering vector.

In early 2024, Darktrace/Apps™ identified two separate instances of malicious actors using Microsoft Teams to launch a phishing attack against Darktrace customers in the Europe, the Middle East and Africa (EMEA) region. Interestingly, in this case the attackers not only used a well-known legitimate service to carry out their phishing campaign, but they were also attempting to impersonate an international hotel chain.

Despite these attempts to evade endpoint users and traditional security measures, Darktrace’s anomaly detection enabled it to identify the suspicious phishing messages and bring them to the customer’s attention. Additionally, Darktrace’s autonomous response capability, was able to follow-up these detections with targeted actions to contain the suspicious activity in the first instance.

Darktrace Coverage of Microsoft Teams Phishing

Chats Sent by External User and Following Actions by Darktrace

On February 29, 2024, Darktrace detected the presence of a new external user on the Software-as-a-Service (SaaS) environment of an EMEA customer for the first time. The user, “REDACTED@InternationalHotelChain[.]onmicrosoft[.]com” was only observed on this date and no further activities were detected from this user after February 29.

Later the same day, the unusual external user created its first chat on Microsoft Teams named “New Employee Loyalty Program”. Over the course of around 5 minutes, the user sent 63 messages across 21 different chats to unique internal users on the customer’s SaaS platform. All these chats included the ‘foreign tenant user’ and one of the customer’s internal users, likely in an attempt to remain undetected. Foreign tenant user, in this case, refers to users without access to typical internal software and privileges, indicating the presence of an external user.

Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Figure 1: Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.
Figure 2: Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.

Darktrace identified that the external user had connected from an unusual IP address located in Poland, 195.242.125[.]186. Darktrace understood that this was unexpected behavior for this user who had only previously been observed connecting from the United Kingdom; it further recognized that no other users within the customer’s environment had connected from this external source, thereby deeming it suspicious. Further investigation by Darktrace’s analyst team revealed that the endpoint had been flagged as malicious by several open-source intelligence (OSINT) vendors.

External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.
Figure 3: External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.

Following Darktrace’s initial detection of these suspicious Microsoft Teams messages, Darktrace's autonomous response was able to further support the customer by providing suggested mitigative actions that could be applied to stop the external user from sending any additional phishing messages.

Unfortunately, at the time of this attack Darktrace's autonomous response capability was configured in human confirmation mode, meaning any autonomous response actions had to be manually actioned by the customer. Had it been enabled in autonomous response mode, it would have been able promptly disrupt the attack, disabling the external user to prevent them from continuing their phishing attempts and securing precious time for the customer’s security team to begin their own remediation procedures.

Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.
Figure 4: Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.

External URL Sent within Teams Chats

Within the 21 Teams chats created by the threat actor, Darktrace identified 21 different external URLs being sent, all of which included the domain "cloud-sharcpoint[.]com”. Many of these URLs had been recently established and had been flagged as malicious by OSINT providers [3]. This was likely an attempt to impersonate “cloud-sharepoint[.]com”, the legitimate domain of Microsoft SharePoint, with the threat actor attempting to ‘typo-squat’ the URL to convince endpoint users to trust the legitimacy of the link. Typo-squatted domains are commonly misspelled URLs registered by opportunistic attackers in the hope of gaining the trust of unsuspecting targets. They are often used for nefarious purposes like dropping malicious files on devices or harvesting credentials.

Upon clicking this malicious link, users were directed to a similarly typo-squatted domain, “InternatlonalHotelChain[.]sharcpoInte-docs[.]com”. This domain was likely made to appear like the SharePoint URL used by the international hotel chain being impersonated.

Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.
Figure 5: Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.

This fake SharePoint page used the branding of the international hotel chain and contained a document named “New Employee Loyalty Program”; the same name given to the phishing messages sent by the attacker on Microsoft Teams. Upon accessing this file, users would be directed to a credential harvester, masquerading as a Microsoft login page, and prompted to enter their credentials. If successful, this would allow the attacker to gain unauthorized access to a user’s SaaS account, thereby compromising the account and enabling further escalation in the customer’s environment.

Figure 6: A fake Microsoft login page that popped-up when attempting to open the ’New Employee Loyalty Program’ document.

This is a clear example of an attacker attempting to leverage social engineering tactics to gain the trust of their targets and convince them to inadvertently compromise their account. Many corporate organizations partner with other companies and well-known brands to offer their employees loyalty programs as part of their employment benefits and perks. As such, it would not necessarily be unexpected for employees to receive such an offer from an international hotel chain. By impersonating an international hotel chain, threat actors would increase the probability of convincing their targets to trust and click their malicious messages and links, and unintentionally compromising their accounts.

In spite of the attacker’s attempts to impersonate reputable brands, platforms, Darktrace/Apps was able to successfully recognize the malicious intent behind this phishing campaign and suggest steps to contain the attack. Darktrace recognized that the user in question had deviated from its ‘learned’ pattern of behavior by connecting to the customer’s SaaS environment from an unusual external location, before proceeding to send an unusually large volume of messages via Teams, indicating that the SaaS account had been compromised.

A Wider Campaign?

Around a month later, in March 2024, Darktrace observed a similar incident of a malicious actor impersonating the same international hotel chain in a phishing attacking using Microsoft Teams, suggesting that this was part of a wider phishing campaign. Like the previous example, this customer was also based in the EMEA region.  

The attack tactics identified in this instance were very similar to the previously example, with a new external user identified within the network proceeding to create a series of Teams messages named “New Employee Loyalty Program” containing a typo-squatted external links.

There were a few differences with this second incident, however, with the attacker using the domain “@InternationalHotelChainExpeditions[.]onmicrosoft[.]com” to send their malicious Teams messages and using differently typo-squatted URLs to imitate Microsoft SharePoint.

As both customers targeted by this phishing campaign were subscribed to Darktrace’s Proactive Threat Notification (PTN) service, this suspicious SaaS activity was promptly escalated to the Darktrace Security Operations Center (SOC) for immediate triage and investigation. Following their investigation, the SOC team sent an alert to the customers informing them of the compromise and advising urgent follow-up.

Schlussfolgerung

While there are clear similarities between these Microsoft Teams-based phishing attacks, the attackers here have seemingly sought ways to refine their tactics, techniques, and procedures (TTPs), leveraging new connection locations and creating new malicious URLs in an effort to outmaneuver human security teams and conventional security tools.

As cyber threats grow increasingly sophisticated and evasive, it is crucial for organizations to employ intelligent security solutions that can see through social engineering techniques and pinpoint suspicious activity early.

Darktrace’s Self-Learning AI understands customer environments and is able to recognize the subtle deviations in a device’s behavioral pattern, enabling it to effectively identify suspicious activity even when attackers adapt their strategies. In this instance, this allowed Darktrace to detect the phishing messages, and the malicious links contained within them, despite the seemingly trustworthy source and use of a reputable platform like Microsoft Teams.

Credit to Min Kim, Cyber Security Analyst, Raymond Norbert, Cyber Security Analyst and Ryan Traill, Threat Content Lead

Anhang

Darktrace Model Detections

SaaS Model

Large Volume of Messages Sent from New External User

SaaS / Unusual Activity / Large Volume of Messages Sent from New External User

Indicators of Compromise (IoCs)

IoC – Type - Description

https://cloud-sharcpoint[.]com/[a-zA-Z0-9]{15} - Example hostname - Malicious phishing redirection link

InternatlonalHotelChain[.]sharcpolnte-docs[.]com – Hostname – Redirected Link

195.242.125[.]186 - External Source IP Address – Malicious Endpoint

MITRE Tactics

Tactic – Technique

Phishing – Initial Access (T1566)

References

[1] https://learn.microsoft.com/en-us/microsoftteams/trusted-organizations-external-meetings-chat?tabs=organization-settings

[2] https://www.virustotal.com/gui/ip-address/195.242.125.186/detection

[3] https://www.virustotal.com/gui/domain/cloud-sharcpoint.com

Continue reading
About the author
Min Kim
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Starten Sie Ihren kostenlosen Test
Darktrace AI protecting a business from cyber threats.