Blog
Ransomware
OT
Vordenkerrolle
Wie der Cyber AI Analyst von Darktrace die Meldung von Vorfällen an die US-Regierung beschleunigt







On March 15, 2022, President Biden signed the Cyber Incident Reporting for Critical Infrastructure Act into law, included as part of the Congressional Omnibus Appropriations bill. The law requires critical infrastructure owners and operators to quickly notify the Cyber and Infrastructure Security Agency (CISA) of ransomware payments and significant cyber-attacks.
The Cyber Incident Reporting for Critical Infrastructure Act creates two new reporting requirements:
- an obligation to report certain cyber incidents to DHS CISA within 72 hours
- an obligation to report ransomware payments within 24 hours
Supporting the new law, Darktrace AI accelerates the cyber incident reporting process. Specifically, Darktrace’s Cyber AI Analyst understands the connections among disparate security incidents with supervised machine learning and autonomously writes incident reports in human-readable language using natural language processing (NLP). These Darktrace incident reports allow human analysts to send reports to CISA quickly and efficiently.
In the below real-world attack case study, we demonstrate how Cyber AI Analyst facilitates seamless reporting for critical infrastructure organizations that fall victim to ransomware and malicious data exfiltration. The AI technology, trained on human analyst behavior, replicates investigations at machine speed and scale, surfacing relevant details in minutes and allowing security teams to understand what happened precisely and share this information with the relevant authorities.
The below threat investigation details a significant threat find on a step by step level in technical detail to demonstrate the power and speed of Cyber AI Analyst.
Cyber AI Analyst’s incident report
When ransomware struck this organization, Cyber AI Analyst was invaluable, autonomously investigating the full scope of the incident and generating a natural language summary that clearly showed the progression of the attack.

In the aftermath of this attack, Darktrace’s technology also offered analyst assistance in mapping out the timeline of the attack and identifying what files were compromised, helping the security team identify anomalous activity related to the ransomware attack.

With Darktrace AI’s insights, the team easily identified the timeline of the attack, affected devices, credentials used, file shares accessed, files exfiltrated, and malicious endpoints contacted, enabling the customer to disclose the scale of the attack and notify necessary parties.
This example demonstrates how Cyber AI Analyst empowers critical infrastructure owners and operators to swiftly report major cyber-attacks to the federal government. Considering that 72 hours is the reporting period is for significant incidents — and 24 hours for ransomware payments — Cyber AI Analyst is no longer a nice-to-have but a must-have for critical infrastructure.
Attack breakdown: Ransomware and data exfiltration
Cyber AI Analyst delivered the most critical information in an easy-to-read report — with no human touch involved — as shown in the incident report above. We will now break down the attack further to demonstrate how Darktrace’s Self-Learning AI understood the unusual activity throughout the attack lifecycle.
In this double extortion ransomware, attackers exfiltrated data over 22 days. The detections made by Darktrace’s Self-Learning AI, and the parallel investigation by Cyber AI Analyst, were used to map the attack chain and identify how and what data had been exfiltrated and encrypted.
The attack consisted of three general groups of events:
- Unencrypted FTP (File Transfer Protocol) data exfiltration to rare malicious external endpoint in Bulgaria (May 9 07:23:46 UTC – May 21 03:06:46 UTC)
- Ransomware encryption of files in network file shares (May 25 01:00:27 UTC – May 30 07:09:53 UTC)
- Encrypted SSH (Secure Shell) data exfiltration to rare malicious external endpoint (May 29 16:43:37 UTC – May 30 13:23:59 UTC)

First, uploads of internal data to a rare external endpoint in Bulgaria were observed within the networks. The exfiltration was preceded by SMB reads of internal file shares before approximately 450GB of data was exfiltrated via FTP.
Darktrace’s AI identified this threatening activity on its own, and the organization was quickly able to pinpoint what data had been exfiltrated, including files camouflaged by markings such as ‘Talent Acquisition’ and ‘Engineering and Construction,’ and legal and financial documents — suggesting that these were documents of an extremely sensitive nature.


Model breaches:
- Anomalous Connection / Unusual Incoming Data Volume
- Anomalous File / Internal / Additional Extension Appended to SMB File
- Compromise / Ransomware / Suspicious SMB Activity
- Compromise / Ransomware / SMB Reads then Writes with Additional Extensions
- Unusual Activity / Anomalous SMB Move & Write
- Unusual Activity / High Volume Server Data Transfer
- Unusual Activity / Sustained Anomalous SMB Activity
- Device / SMB Lateral Movement
Four days following this observed activity, Darktrace’s AI detected the deployment of ransomware when multiple compromised devices began making anomalous SMB connections to file shares that they do not typically access, reading and writing similar volumes to the SMB file shares, as well as writing additional extensions to files over SMB. The file extension comprised a random string of letters and was likely to be unique to this target.
Using Darktrace, the customer obtained a full list of files that had been encrypted. The list included apparent financial records in an ‘Accounts’ file share.

Model breaches:
- Anomalous Connection / Unusual Incoming Data Volume
- Anomalous File / Internal / Additional Extension Appended to SMB File
- Compromise / Ransomware / Suspicious SMB Activity
- Compromise / Ransomware / SMB Reads then Writes with Additional Extensions
- Unusual Activity / Anomalous SMB Move & Write
- Unusual Activity / High Volume Server Data Transfer
- Unusual Activity / Sustained Anomalous SMB Activity
- Device / SMB Lateral Movement
Simultaneously, uploads of internal data to a rare external endpoint were observed within the network. The uploads were all performed using encrypted SSH/SFTP. In total, approximately 3.5GB of data was exfiltrated this way.
Despite the attacker using an encrypted channel to exfiltrate this data, Darktrace detected anomalous SMB file transfers prior to the external upload, indicating which files were exfiltrated. Here, Darktrace’s ability to go ‘back in time’ proved invaluable in helping analysts determine which files had been exfiltrated, although they were exfiltrated via an encrypted means.

Model breaches:
- Anomalous Server Activity / Outgoing from Server
- Compliance / SSH to Rare External Destination
- Unusual Activity / Enhanced Unusual External Data Transfer
- Device / Anomalous SMB Followed By Multiple Model Breaches
- Device / Large Number of Model Breaches
- Anomalous Connection / Uncommon 1 GiB Outbound
- Anomalous Connection / Data Sent to Rare Domain
- Anomalous Connection / Data Sent To New External Device
How did the attack bypass the rest of the security stack?
Existing administrative credentials were used to escalate privileges within the network and perform malicious activity.
Had Darktrace Antigena been active, it would have actioned a targeted, autonomous response to contain the activity in its early stages. Antigena would have enforced the ‘pattern of life’ on the devices involved in anomalous SMB activity — containing activity such as reading from file shares that are not normally connected, appending extensions to files and blocking outgoing connections to rare external endpoints.
However, in this case, Antigena was not set up to take action – it was configured in Human Confirmation mode. The incident was clearly alerted on by Darktrace, and appeared as a top priority item in the security team’s workflow. However, the security team was not monitoring Darktrace’s user interface, and in the absence of any action taken by other tools, the attack was allowed to progress, and the organization was obligated to disclose the details of the incident.
Streamlining the reporting process
In the modern threat landscape, leaning on AI to stop fast-moving and sophisticated attacks at machine speed and scale is critical. As this attack shows, the technology also helps organizations fulfill reporting requirements in the aftermath of an attack.
New legislation requires timely disclosure; with many traditional approaches to security, organizations do not have the capacity to surface the full details after an attack. On top of this, collating these details can take days or weeks. This is why Darktrace is no longer a nice-to-have but a must-have for critical infrastructure organizations, which are now required to report significant incidents swiftly.
Darktrace’s AI detects malicious activity as it happens and empowers customers to quickly understand the timeline of a compromise, as well as files accessed and exfiltrated by an attacker. This not only prepares organizations to resist the most sophisticated attacks, but also accelerates and radically simplifies the process of reporting the data breach.
Security teams should not have to confront disclosure processes on their own. Attacks happen fast, and their aftermaths are messy – retrospective investigation of lost data can be a futile effort with traditional approaches. With Darktrace, security teams can meet disruptive and sudden attacks with precise and nimble means of uncovering data, as well as detection and mitigation of risk. And, should the need arise, rapid and accurate reporting of events is laid out on a silver platter by the AI.
Sie mögen das und wollen mehr?
More in this series
Blog
Einblicke in das SOC-Team
Protecting Prospects: How Darktrace Detected an Account Hijack Within Days of Deployment



Cloud Migration Expanding the Attack Surface
Cloud migration is here to stay – accelerated by pandemic lockdowns, there has been an ongoing increase in the use of public cloud services, and Gartner has forecasted worldwide public cloud spending to grow around 20%, or by almost USD 600 billion [1], in 2023. With more and more organizations utilizing cloud services and moving their operations to the cloud, there has also been a corresponding shift in malicious activity targeting cloud-based software and services, including Microsoft 365, a prominent and oft-used Software-as-a-Service (SaaS).
With the adoption and implementation of more SaaS products, the overall attack surface of an organization increases – this gives malicious actors additional opportunities to exploit and compromise a network, necessitating proper controls to be in place. This increased attack surface can leave organization’s open to cyber risks like cloud misconfigurations, supply chain attacks and zero-day vulnerabilities [2]. In order to achieve full visibility over cloud activity and prevent SaaS compromise, it is paramount for security teams to deploy sophisticated security measures that are able to learn an organization’s SaaS environment and detect suspicious activity at the earliest stage.
Darktrace Immediately Detects Hijacked Account
In May 2023, Darktrace observed a chain of suspicious SaaS activity on the network of a customer who was about to begin their trial of Darktrace/Cloud™ and Darktrace/Email™. Despite being deployed on the network for less than a week, Darktrace DETECT™ recognized that the legitimate SaaS account, belonging to an executive at the organization, had been hijacked. Darktrace/Email was able to provide full visibility over inbound and outbound mail and identified that the compromised account was subsequently used to launch an internal spear-phishing campaign.
If Darktrace RESPOND™ were enabled in autonomous response mode at the time of this compromise, it would have been able to take swift preventative action to disrupt the account compromise and prevent the ensuing phishing attack.
Account Hijack Attack Overview
Unusual External Sources for SaaS Credentials
On May 9, 2023, Darktrace DETECT/Cloud detected the first in a series of anomalous activities performed by a Microsoft 365 user account that was indicative of compromise, namely a failed login from an external IP address located in Virginia.

Just a few minutes later, Darktrace observed the same user credential being used to successfully login from the same unusual IP address, with multi-factor authentication (MFA) requirements satisfied.

A few hours after this, the user credential was once again used to login from a different city in the state of Virginia, with MFA requirements successfully met again. Around the time of this activity, the SaaS user account was also observed previewing various business-related files hosted on Microsoft SharePoint, behavior that, taken in isolation, did not appear to be out of the ordinary and could have represented legitimate activity.
The following day, May 10, however, there were additional login attempts observed from two different states within the US, namely Texas and Florida. Darktrace understood that this activity was extremely suspicious, as it was highly improbable that the legitimate user would be able to travel over 2,500 miles in such a short period of time. Both login attempts were successful and passed MFA requirements, suggesting that the malicious actor was employing techniques to bypass MFA. Such MFA bypass techniques could include inserting malicious infrastructure between the user and the application and intercepting user credentials and tokens, or by compromising browser cookies to bypass authentication controls [3]. There have also been high-profile cases in the recent years of legitimate users mistakenly (and perhaps even instinctively) accepting MFA prompts on their token or mobile device, believing it to be a legitimate process despite not having performed the login themselves.
New Email Rule
On the evening of May 10, following the successful logins from multiple US states, Darktrace observed the Microsoft 365 user creating a new inbox rule, named “.’, in Microsoft Outlook from an IP located in Florida. Threat actors are often observed naming new email rules with single characters, likely to evade detection, but also for the sake of expediency so as to not expend any additional time creating meaningful labels.
In this case the newly created email rules included several suspicious properties, including ‘AlwaysDeleteOutlookRulesBlob’, ‘StopProcessingRules’ and “MoveToFolder”.
Firstly, ‘AlwaysDeleteOutlookRulesBlob’ suppresses or hides warning messages that typically appear if modifications to email rules are made [4]. In this case, it is likely the malicious actor was attempting to implement this property to obfuscate the creation of new email rules.
The ‘StopProcessingRules’ rule meant that any subsequent email rules created by the legitimate user would be overridden by the email rule created by the malicious actor [5]. Finally, the implementation of “MoveToFolder” would allow the malicious actor to automatically move all outgoing emails from the “Sent” folder to the “Deleted Items” folder, for example, further obfuscating their malicious activities [6]. The utilization of these email rule properties is frequently observed during account hijackings as it allows attackers to delete and/or forward key emails, delete evidence of exploitation and launch phishing campaigns [7].
In this incident, the new email rule would likely have enabled the malicious actor to evade the detection of traditional security measures and achieve greater persistence using the Microsoft 365 account.

Account Update
A few hours after the creation of the new email rule, Darktrace observed the threat actor successfully changing the Microsoft 365 user’s account password, this time from a new IP address in Texas. As a result of this action, the attacker would have locked out the legitimate user, effectively gaining full access over the SaaS account.

Phishing Emails
The compromised SaaS account was then observed sending a high volume of suspicious emails to both internal and external email addresses. Darktrace was able to identify that the emails attempting to impersonate the legitimate service DocuSign and contained a malicious link prompting users to click on the text “Review Document”. Upon clicking this link, users would be redirected to a site hosted on Adobe Express, namely hxxps://express.adobe[.]com/page/A9ZKVObdXhN4p/.
Adobe Express is a free service that allows users to create web pages which can be hosted and shared publicly; it is likely that the threat actor here leveraged the service to use in their phishing campaign. When clicked, such links could result in a device unwittingly downloading malware hosted on the site, or direct unsuspecting users to a spoofed login page attempting to harvest user credentials by imitating legitimate companies like Microsoft.

The malicious site hosted on Adobe Express was subsequently taken down by Adobe, possibly in response to user reports of maliciousness. Unfortunately though, platforms like this that offer free webhosting services can easily and repeatedly be abused by malicious actors. Simply by creating new pages hosted on different IP addresses, actors are able to continue to carry out such phishing attacks against unsuspecting users.
In addition to the suspicious SaaS and email activity that took place between May 9 and May 10, Darktrace/Email also detected the compromised account sending and receiving suspicious emails starting on May 4, just two days after Darktrace’s initial deployment on the customer’s environment. It is probable that the SaaS account was compromised around this time, or even prior to Darktrace’s deployment on May 2, likely via a phishing and credential harvesting campaign similar to the one detailed above.

Darktrace Coverage
As the customer was soon to begin their trial period, Darktrace RESPOND was set in “human confirmation” mode, meaning that any preventative RESPOND actions required manual application by the customer’s security team.
If Darktrace RESPOND had been enabled in autonomous response mode during this incident, it would have taken swift mitigative action by logging the suspicious user out of the SaaS account and disabling the account for a defined period of time, in doing so disrupting the attack at the earliest possible stage and giving the customer the necessary time to perform remediation steps. As it was, however, these RESPOND actions were suggested to the customer’s security team for them to manually apply.

Nevertheless, with Darktrace DETECT/Cloud in place, visibility over the anomalous cloud-based activities was significantly increased, enabling the swift identification of the chain of suspicious activities involved in this compromise.
In this case, the prospective customer reached out to Darktrace directly through the Ask the Expert (ATE) service. Darktrace’s expert analyst team then conducted a timely and comprehensive investigation into the suspicious activity surrounding this SaaS compromise, and shared these findings with the customer’s security team.
Schlussfolgerung
Ultimately, this example of SaaS account compromise highlights Darktrace’s unique ability to learn an organization’s digital environment and recognize activity that is deemed to be unexpected, within a matter of days.
Due to the lack of obvious or known indicators of compromise (IoCs) associated with the malicious activity in this incident, this account hijack would likely have gone unnoticed by traditional security tools that rely on a rules and signatures-based approach to threat detection. However, Darktrace’s Self-Learning AI enables it to detect the subtle deviations in a device’s behavior that could be indicative of an ongoing compromise.
Despite being newly deployed on a prospective customer’s network, Darktrace DETECT was able to identify unusual login attempts from geographically improbable locations, suspicious email rule updates, password changes, as well as the subsequent mounting of a phishing campaign, all before the customer’s trial of Darktrace had even begun.
When enabled in autonomous response mode, Darktrace RESPOND would be able to take swift preventative action against such activity as soon as it is detected, effectively shutting down the compromise and mitigating any subsequent phishing attacks.
With the full deployment of Darktrace’s suite of products, including Darktrace/Cloud and Darktrace/Email, customers can rest assured their critical data and systems are protected, even in the case of hybrid and multi-cloud environments.
Credit: Samuel Wee, Senior Analyst Consultant & Model Developer
Appendices
References
[2] https://www.upguard.com/blog/saas-security-risks
[4] https://learn.microsoft.com/en-us/powershell/module/exchange/disable-inboxrule?view=exchange-ps
[7] https://blog.knowbe4.com/check-your-email-rules-for-maliciousness
Darktrace Model Detections
Darktrace DETECT/Cloud and RESPOND Models Breached:
SaaS / Access / Unusual External Source for SaaS Credential Use
SaaS / Unusual Activity / Multiple Unusual External Sources for SaaS Credential
Antigena / SaaS / Antigena Unusual Activity Block (RESPOND Model)
SaaS / Compliance / New Email Rule
Antigena / SaaS / Antigena Significant Compliance Activity Block
SaaS / Compromise / Unusual Login and New Email Rule (Enhanced Monitoring Model)
Antigena / SaaS / Antigena Suspicious SaaS Activity Block (RESPOND Model)
SaaS / Compromise / SaaS Anomaly Following Anomalous Login (Enhanced Monitoring Model)
SaaS / Compromise / Unusual Login and Account Update
Antigena / SaaS / Antigena Suspicious SaaS Activity Block (RESPOND Model)
IoC – Type – Description & Confidence
hxxps://express.adobe[.]com/page/A9ZKVObdXhN4p/ - Domain – Probable Phishing Page (Now Defunct)
37.19.221[.]142 – IP Address – Unusual Login Source
35.174.4[.]92 – IP Address – Unusual Login Source
MITRE ATT&CK Mapping
Tactic - Techniques
INITIAL ACCESS, PRIVILEGE ESCALATION, DEFENSE EVASION, PERSISTENCE
T1078.004 – Cloud Accounts
DISCOVERY
T1538 – Cloud Service Dashboards
CREDENTIAL ACCESS
T1539 – Steal Web Session Cookie
RESOURCE DEVELOPMENT
T1586 – Compromise Accounts
PERSISTENCE
T1137.005 – Outlook Rules

Blog
Darktrace/Email in Action: Why AI-Driven Email Security is the Best Defense Against Sustained Phishing Campaigns
_11zon.jpg)


Stopping the bad while allowing the good
Since its inception, email has been regarded as one of the most important tools for businesses, revolutionizing communication and allowing global teams to become even more connected. But besides organizations heavily relying on email for their daily operations, threat actors have also recognized that the inbox is one of the easiest ways to establish an initial foothold on the network.
Today, not only are phishing campaigns and social engineering attacks becoming more prevalent, but the level of sophistication of these attacks are also increasing with the help of generative AI tools that allow for the creation of hyper-realistic emails with minimal errors, effectively lowering the barrier to entry for threat actors. These diverse and stealthy types of attacks evade traditional email security tools based on rules and signatures, because they are less likely to contain the low-sophistication markers of a typical phishing attack.
In a situation where the sky is the limit for attackers and security teams are lean, how can teams equip themselves to tackle these threats? How can they accurately detect increasingly realistic malicious emails and neutralize these threats before it is too late? And importantly, how can email security block these threats while allowing legitimate emails to flow freely?
Instead of relying on past attack data, Darktrace’s Self-Learning AI detects the slightest deviation from a user’s pattern of life and responds autonomously to contain potential threats, stopping novel attacks in their tracks before damage is caused. It doesn’t define ‘good’ and ‘bad’ like traditional email tools, rather it understands each user and what is normal for them – and what’s not.
This blog outlines how Darktrace/Email™ used its understanding of ‘normal’ to accurately detect and respond to a sustained phishing campaign targeting a real-life company.
Responding to a sustained phishing attack
Over the course of 24 hours, Darktrace detected multiple emails containing different subjects, all from different senders to different recipients in one organization. These emails were sent from different IP addresses, but all came from the same autonomous system number (ASN).

The emails themselves had many suspicious indicators. All senders had no prior association with the recipient, and the emails generated a high general inducement score. This score is generated by structural and non-specific content analysis of the email – a high score indicates that the email is trying to induce the recipient into taking a particular action, which may lead to account compromise.
Additionally, each email contained a visually prominent link to a file storage service, hidden behind a shortened bit.ly link. The similarities across all these emails pointed to a sustained campaign targeting the organization by a single threat actor.


With all these suspicious indicators, many models were breached. This drove up the anomaly score, causing Darktrace/Email to hold all suspicious emails from the recipients’ inboxes, safeguarding the recipients from potential account compromise and disallowing the threats from taking hold in the network.
Imagining a phishing attack without Darktrace/Email
So what could have happened if Darktrace had not withheld these emails, and the recipients had clicked on the links? File storage sites have a wide variety of uses that allow attackers to be creative in their attack strategy. If the user had clicked on the shortened link, the possible consequences are numerous. The link could have led to a login page for unsuspecting victims to input their credentials, or it could have hosted malware that would automatically download if the link was clicked. With the compromised credentials, threat actors could even bypass MFA, change email rules, or gain privileged access to a network. The downloaded malware might also be a keylogger, leading to cryptojacking, or could open a back door for threat actors to return to at a later time.


The limits of traditional email security tools
Secure email gateways (SEGs) and static AI security tools may have found it challenging to detect this phishing campaign as malicious. While Darktrace was able to correlate these emails to determine that a sustained phishing campaign was taking place, the pattern among these emails is far too generic for specific rules as set in traditional security tools. If we take the characteristic of the freemail account sender as an example, setting a rule to block all emails from freemail accounts may lead to more legitimate emails being withheld, since these addresses have a variety of uses.
With these factors in mind, these emails could have easily slipped through traditional security filters and led to a devastating impact on the organization.
Schlussfolgerung
As threat actors step up their attacks in sophistication, prioritizing email security is more crucial than ever to preserving a safe digital environment. In response to these challenges, Darktrace/Email offers a set-and-forget solution that continuously learns and adapts to changes in the organization.
Through an evolving understanding of every environment in which it is deployed, its threat response becomes increasingly precise in neutralizing only the bad, while allowing the good – delivering email security that doesn’t come at the expense of business growth.