Blog

Einblicke in das SOC-Team

Worming Ausbreitung des Sysrv-hello Crypto-Jacking-Botnets: Analyse des Netzwerkverkehrs und die aktuellen TTPs

Standard-BlogbildStandard-BlogbildStandard-BlogbildStandard-BlogbildStandard-BlogbildStandard-Blogbild
25
Mai 2022
25
Mai 2022
Dieser Blog beschreibt die Abfolge der Ereignisse in der Cyber-Kill-Chain einer Sysrv-hello-Botnet-Infektion, die bei einem Einsatz in einer Organisation in Frankreich, die Darktrace testete, beobachtet wurde. Darktrace sorgte durch Modellerfassungen und Cyber AI Analyst für Transparenz auf Netzwerkebene und gab Einblicke in die neuesten TTPs des Botnets im März und April 2022.

In recent years, the prevalence of crypto-jacking botnets has risen in tandem with the popularity and value of cryptocurrencies. Increasingly crypto-mining malware programs are distributed by botnets as they allow threat actors to harness the cumulative processing power of a large number of machines (discussed in our other Darktrace blogs.1 2 One of these botnets is Sysrv-hello, which in addition to crypto-mining, propagates aggressively across the Internet in a worm-like manner by trolling for Remote Code Execution (RCE) vulnerabilities and SSH worming from the compromised victim devices. This all has the purpose of expanding the botnet.

First identified in December 2020, Sysrv-hello’s operators constantly update and change the bots’ behavior to evolve and stay ahead of security researchers and law enforcement. As such, infected systems can easily go unnoticed by both users and organizations. This blog examines the cyber kill chain sequence of a Sysrv-hello botnet infection detected at the network level by Darktrace DETECT/Network, as well as the botnet’s tactics, techniques, and procedures (TTPs) in March and April 2022.

Abbildung 1: Zeitlicher Ablauf des Angriffs

Delivery and exploitation

The organization, which was trialing Darktrace, had deployed the technology on March 2, 2022. On the very same day, the initial host infection was seen through the download of a first-stage PowerShell loader script from a rare external endpoint by a device in the internal network. Although initial exploitation of the device happened prior to the installation and was not observed, this botnet is known to target RCE vulnerabilities in various applications such as MySQL, Tomcat, PHPUnit, Apache Solar, Confluence, Laravel, JBoss, Jira, Sonatype, Oracle WebLogic and Apache Struts to gain initial access to internal systems.3 Recent iterations have also been reported to have been deployed via drive-by-downloads from an empty HTML iframe pointing to a malicious executable that downloads to the device from a user visiting a compromised website.4

Erstes Eindringen

The Sysrv-hello botnet is distributed for both Linux and Windows environments, with the corresponding compatible script pulled based on the architecture of the system. In this incident, the Windows version was observed.

On March 2, 2022 at 15:15:28 UTC, the device made a successful HTTP GET request to a malicious IP address5 that had a rarity score of 100% in the network. It subsequently downloaded a malicious PowerShell script named ‘ldr.ps1'6 onto the system. The associated IP address ‘194.145.227[.]21’ belongs to ‘ASN AS48693 Rices Privately owned enterprise’ and had been identified as a Sysrv-hello botnet command and control (C2) server in April the previous year. 3

Looking at the URI ‘/ldr.ps1?b0f895_admin:admin_81.255.222.82:8443_https’, it appears some form of query was being executed onto the object. The question mark ‘?’ in this URI is used to delimit the boundary between the URI of the queryable object and the set of strings used to express a query onto that object. Conventionally, we see the set of strings contains a list of key/value pairs with equal signs ‘=’, which are separated by the ampersand symbol ‘&’ between each of those parameters (e.g. www.youtube[.]com/watch?v=RdcCjDS0s6s&ab_channel=SANSCyberDefense), though the exact structure of the query string is not standardized and different servers may parse it differently. Instead, this case saw a set of strings with the hexadecimal color code #b0f895 (a light shade of green), admin username and password login credentials, and the IP address ‘81.255.222[.]82’ being applied during the object query (via HTTPS protocol on port 8443). In recent months this French IP has also had reports of abuse from the OSINT community.7

On March 2, 2022 at 15:15:33 UTC, the PowerShell loader script further downloaded second-stage executables named ‘sys.exe’ and ‘xmrig.2 sver.8 9 These have been identified as the worm and cryptocurrency miner payloads respectively.

Establish foothold

On March 2, 2022 at 17:46:55 UTC, after the downloads of the worm and cryptocurrency miner payloads, the device initiated multiple SSL connections in a regular, automated manner to Pastebin – a text storage website. This technique was used as a vector to download/upload data and drop further malicious scripts onto the host. OSINT sources suggest the JA3 client SSL fingerprint (05af1f5ca1b87cc9cc9b25185115607d) is associated with PowerShell usage, corroborating with the observation that further tooling was initiated by the PowerShell script ‘ldr.ps1’.

Continual Pastebin C2 connections were still being made by the device almost two months since the initiation of such connections. These Pastebin C2 connections point to new tactics and techniques employed by Sysrv-hello — reports earlier than May do not appear to mention any usage of the file storage site. These new TTPs serve two purposes: defense evasion using a web service/protocol and persistence. Persistence was likely achieved through scheduling daemons downloaded from this web service and shellcode executions at set intervals to kill off other malware processes, as similarly seen in other botnets.10 Recent reports have seen other malware programs also switch to Pastebin C2 tunnels to deliver subsequent payloads, scrapping the need for traditional C2 servers and evading detection.11

Figure 2: A section of the constant SSL connections that the device was still making to ‘pastebin[.]com’ even in the month of April, which resembles beaconing scheduled activity

Throughout the months of March and April, suspicious SSL connections were made from a second potentially compromised device in the internal network to the infected breach device. The suspicious French IP address ‘81.255.222[.]82’ previously seen in the URI object query was revealed as the value of the Server Name Indicator (SNI) in these SSL connections where, typically, a hostname or domain name is indicated.

After an initial compromise, attackers usually aim to gain long-term remote shell access to continue the attack. As the breach device does not have a public IP address and is most certainly behind a firewall, for it to be directly accessible from the Internet a reverse shell would need to be established. Outgoing connections often succeed because firewalls generally filter only incoming traffic. Darktrace observed the device making continuous outgoing connections to an external host listening on an unusual port, 8443, indicating the presence of a reverse shell for pivoting and remote administration.

Figure 3: SSL connections to server name ‘81.255.222[.]8’ at end of March and start of April

Accomplish mission

On March 4, 2022 at 15:07:04 UTC, the device made a total of 16,029 failed connections to a large volume of external endpoints on the same port (8080). This behavior is consistent with address scanning. From the country codes, it appears that public IP addresses for various countries around the world were contacted (at least 99 unique addresses), with the US being the most targeted.

From 19:44:36 UTC onwards, the device performed cryptocurrency mining using the Minergate mining pool protocol to generate profits for the attacker. A login credential called ‘x’ was observed in the Minergate connections to ‘194.145.227[.]21’ via port 5443. JSON-RPC methods of ‘login’ and ‘submit’ were seen from the connection originator (the infected breach device) and ‘job’ was seen from the connection responder (the C2 server). A high volume of connections using the JSON-RPC application protocol to ‘pool-fr.supportxmr[.]com’ were also made on port 80.

When the botnet was first discovered in December 2020, mining pools MineXMR and F2Pool were used. In February 2021, MineXMR was removed and in March 2021, Nanopool mining pool was added,12 before switching to the present SupportXMR and Minergate mining pools. Threat actors utilize such proxy pools to help hide the actual crypto wallet address where the contributions are made by the crypto-mining activity. From April onwards, the device appears to download the ‘xmrig.exe’ executable from a rare IP address ‘61.103.177[.]229’ in Korea every few days – likely in an attempt to establish persistency and ensure the cryptocurrency mining payload continues to exist on the compromised system for continued mining.

On March 9, 2022 from 18:16:20 UTC onwards, trolling for various RCE vulnerabilities (including but not limited to these four) was observed over HTTP connections to public IP addresses:

  1. Through March, the device made around 5,417 HTTP POSTs with the URI ‘/vendor/phpunit/phpunit/src/Util/PHP/eval-stdin.php’ to at least 99 unique public IPs. This appears to be related to CVE-2017-9841, which in PHPUnit allows remote attackers to execute arbitrary PHP code via HTTP POST data beginning with a ‘13 PHPUnit is a common testing framework for PHP, used for performing unit tests during application development. It is used by a variety of popular Content Management Systems (CMS) such as WordPress, Drupal and Prestashop. This CVE has been called “one of the most exploitable CVEs of 2019,” with around seven million attack attempts being observed that year.14 This framework is not designed to be exposed on the critical paths serving web pages and should not be reachable by external HTTP requests. Looking at the status messages of the HTTP POSTs in this incident, some ‘Found’ and ‘OK’ messages were seen, suggesting the vulnerable path could be accessible on some of those endpoints.

Abbildung 4: PCAP der Sicherheitslücke CVE-2017-9841

Abbildung 5: Der anfällige Pfad CVE-2017-9841 scheint auf einigen Endpunkten erreichbar zu sein

  1. Through March, the device also made around 5,500 HTTP POSTs with the URI ‘/_ignition/execute-solution’ to at least 99 unique public IPs. This appears related to CVE-2021-3129, which allows unauthenticated remote attackers to execute arbitrary code using debug mode with Laravel, a PHP web application framework in versions prior to 8.4.2.15 The POST request below makes the variable ‘username’ optional, and the ‘viewFile’ parameter is empty, as a test to see if the endpoint is vulnerable.16

Figure 6: PCAP of CVE-2021-3129 vulnerability trolling

  1. The device made approximately a further 252 HTTP GETs with URIs containing ‘invokefunction&function’ to another minimum of 99 unique public IPs. This appears related to a RCE vulnerability in ThinkPHP, an open-source web framework.17

Figure 7: Some of the URIs associated with ThinkPHP RCE vulnerability

  1. A HTTP header related to a RCE vulnerability for the Jakarta Multipart parser used by Apache struts2 in CVE-2017-563818 was also seen during the connection attempts. In this case the payload used a custom Content-Type header.

Figure 8: PCAP of CVE-2017-5638 vulnerability trolling

Two widely used methods of SSH authentication are public key authentication and password authentication. After gaining a foothold in the network, previous reports3 19 have mentioned that Sysrv-hello harvests private SSH keys from the compromised device, along with identifying known devices. Being a known device means the system can communicate with the other system without any further authentication checks after the initial key exchange. This technique was likely performed in conjunction with password brute-force attacks against the known devices. Starting from March 9, 2022 at 20:31:25 UTC, Darktrace observed the device making a large number of SSH connections and login failures to public IP ranges. For example, between 00:05:41 UTC on March 26 and 05:00:02 UTC on April 14, around 83,389 SSH connection attempts were made to 31 unique public IPs.

Figure 9: Darktrace’s Threat Visualizer shows large spikes in SSH connections by the breach device

Figure 10: Beaconing SSH connections to a single external endpoint, indicating a potential brute-force attack

Darktrace Abdeckung

Cyber AI Analyst was able to connect the events and present them in a digestible, chronological order for the organization. In the aftermath of any security incidents, this is a convenient way for security users to conduct assisted investigations and reduce the workload on human analysts. However, it is good to note that this activity was also easily observed in real time from the model section on the Threat Visualizer due to the large number of escalating model breaches.

Figure 11: Cyber AI Analyst consolidating the events in the month of March into a summary

Figure 12: Cyber AI Analyst shows the progression of the attack through the month of March

As this incident occurred during a trial, Darktrace RESPOND was enabled in passive mode – with a valid license to display the actions that it would have taken, but with no active control performed. In this instance, no Antigena models breached for the initial compromised device as it was not tagged to be eligible for Antigena actions. Nonetheless, Darktrace was able to provide visibility into these anomalous connections.

Had Antigena been deployed in active mode, and the breach device appropriately tagged with Antigena All or Antigena External Threat, Darktrace would have been able to respond and neutralize different stages of the attack through network inhibitors Block Matching Connections and Enforce Group Pattern of Life, and relevant Antigena models such as Antigena Suspicious File Block, Antigena Suspicious File Pattern of Life Block, Antigena Pastebin Block and Antigena Crypto Currency Mining Block. The first of these inhibitors, Block Matching Connections, will block the specific connection and all future connections that matches the same criteria (e.g. all future outbound HTTP connections from the breach device to destination port 80) for a set period of time. Enforce Group Pattern of Life allows a device to only make connections and data transfers that it or any of its peer group typically make.

Schlussfolgerung

Resource hijacking results in unauthorized consumption of system resources and monetary loss for affected organizations. Compromised devices can potentially be rented out to other threat actors and botnet operators could switch from conducting crypto-mining to other more destructive illicit activities (e.g. DDoS or dropping of ransomware) whilst changing their TTPs in the future. Defenders are constantly playing catch-up to this continual evolution, and retrospective rules and signatures solutions or threat intelligence that relies on humans to spot future threats will not be able to keep up.

In this case, it appears the botnet operator has added an object query in the URL of the initial PowerShell loader script download, added Pastebin C2 for evasion and persistence, and utilized new cryptocurrency mining pools. Despite this, Darktrace’s Self-Learning AI was able to identify the threats the moment attackers changed their approach, detecting every step of the attack in the network without relying on known indicators of threat.

Anhang

Abweichungen von Darktrace Modellen

  • Anomalous File / Script from Rare Location
  • Anomalous File / EXE from Rare External Location
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Device / External Address Scan
  • Compromise / Crypto Currency Mining Activity
  • Compromise / High Priority Crypto Currency Mining
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / SSL Beaconing to Rare Destination
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Device / Large Number of Model Breaches
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / SSH Brute Force
  • Compromise / SSH Beacon
  • Compliance / SSH to Rare External AWS
  • Compromise / High Frequency SSH Beacon
  • Compliance / SSH to Rare External Destination
  • Device / Multiple C2 Model Breaches
  • Anomalous Connection / POST to PHP on New External Host

MITRE ATT&CK techniques observed:

IoCs

Vielen Dank an Victoria Baldie und Yung Ju Chua für ihre Beiträge.

Fußnoten

1. https://www.darktrace.com/de/blog/crypto-botnets-moving-lateral

2. https://www.darktrace.com/de/blog/how-ai-uncovered-outlaws-secret-crypto-mining-operation

3. https://www.lacework.com/blog/sysrv-hello-expands-infrastructure

4. https://www.riskiq.com/blog/external-threat-management/sysrv-hello-cryptojacking-botnet

5. https://www.virustotal.com/gui/ip-address/194.145.227.21

6. https://www.virustotal.com/gui/url/c586845daa2aec275453659f287dcb302921321e04cb476b0d98d731d57c4e83?nocache=1

7. https://www.abuseipdb.com/check/81.255.222.82

8. https://www.virustotal.com/gui/file/586e271b5095068484446ee222a4bb0f885987a0b77e59eb24511f6d4a774c30

9. https://www.virustotal.com/gui/file/f5bef6ace91110289a2977cfc9f4dbec1e32fecdbe77326e8efe7b353c58e639

10. https://www.ironnet.com/blog/continued-exploitation-of-cve-2021-26084

11. https://www.zdnet.com/article/njrat-trojan-operators-are-now-using-pastebin-as-alternative-to-central-command-server

12. https://blogs.juniper.net/en-us/threat-research/sysrv-botnet-expands-and-gains-persistence

13. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9841

14. https://www.imperva.com/blog/the-resurrection-of-phpunit-rce-vulnerability

15. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3129

16. https://isc.sans.edu/forums/diary/Laravel+v842+Exploit+Versuche+für+CVE20213129+Debug+Modus+Remote+Code+Ausführung/27758

17. https://securitynews.sonicwall.com/xmlpost/thinkphp-remote-code-execution-rce-bug-is-actively-being-exploited

18. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638

19. https://sysdig.com/blog/crypto-sysrv-hello-wordpress

EINBLICKE IN DAS SOC-Team
Darktrace Cyber-Analysten sind erstklassige Experten für Threat Intelligence, Threat Hunting und Incident Response. Sie bieten Tausenden von Darktrace Kunden auf der ganzen Welt rund um die Uhr SOC-Support. Einblicke in das SOC-Team wird ausschließlich von diesen Experten verfasst und bietet Analysen von Cyber-Vorfällen und Bedrohungstrends, die auf praktischen Erfahrungen in diesem Bereich basieren.
AUTOR
ÜBER DEN AUTOR
Shuh Chin Goh
Book a 1-1 meeting with one of our experts
share this article
ANWENDUNGSFÄLLE
Keine Artikel gefunden.
PRODUKT-SPOTLIGHT
Keine Artikel gefunden.
COre-Abdeckung
Keine Artikel gefunden.

More in this series

Keine Artikel gefunden.

Blog

Einblicke in das SOC-Team

Quasar Remote Access Tool: When a Legitimate Admin Tool Falls into the Wrong Hands

Standard-BlogbildStandard-Blogbild
23
Feb 2024

The threat of interoperability

As the “as-a-Service” market continues to grow, indicators of compromise (IoCs) and malicious infrastructure are often interchanged and shared between multiple malware strains and attackers. This presents organizations and their security teams with a new threat: interoperability.

Interoperable threats not only enable malicious actors to achieve their objectives more easily by leveraging existing infrastructure and tools to launch new attacks, but the lack of clear attribution often complicates identification for security teams and incident responders, making it challenging to mitigate and contain the threat.

One such threat observed across the Darktrace customer base in late 2023 was Quasar, a legitimate remote administration tool that has becoming increasingly popular for opportunistic attackers in recent years. Working in tandem, the anomaly-based detection of Darktrace DETECT™ and the autonomous response capabilities of Darktrace RESPOND™ ensured that affected customers were promptly made aware of any suspicious activity on the attacks were contained at the earliest possible stage.

What is Quasar?

Quasar is an open-source remote administration tool designed for legitimate use; however, it has evolved to become a popular tool used by threat actors due to its wide array of capabilities.  

How does Quasar work?

For instance, Quasar can perform keylogging, take screenshots, establish a reverse proxy, and download and upload files on a target device [1].  A report released towards the end of 2023 put Quasar back on threat researchers’ radars as it disclosed the new observation of dynamic-link library (DLL) sideloading being used by malicious versions of this tool to evade detection [1].  DLL sideloading involves configuring legitimate Windows software to run a malicious file rather than the legitimate file it usually calls on as the software loads.  The evolving techniques employed by threat actors using Quasar highlights defenders’ need for anomaly-based detections that do not rely on pre-existing knowledge of attacker techniques, and can identify and alert for unusual behavior, even if it is performed by a legitimate application.

Although Quasar has been used by advanced persistent threat (APT) groups for global espionage operations [2], Darktrace observed the common usage of default configurations for Quasar, which appeared to use shared malicious infrastructure, and occurred alongside other non-compliant activity such as BitTorrent use and cryptocurrency mining.  

Quasar Attack Overview and Darktrace Coverage

Between September and October 2023, Darktrace detected multiple cases of malicious Quasar activity across several customers, suggesting probable campaign activity.  

Quasar infections can be difficult to detect using traditional network or host-based tools due to the use of stealthy techniques such as DLL side-loading and encrypted SSL connections for command-and control (C2) communication, that traditional security tools may not be able to identify.  The wide array of capabilities Quasar possesses also suggests that attacks using this tool may not necessarily be modelled against a linear kill chain. Despite this, the anomaly-based detection of Darktrace DETECT allowed it to identify IoCs related to Quasar at multiple stages of the kill chain.

Quasar Initial Infection

During the initial infection stage of a Quasar compromise observed on the network of one customer, Darktrace detected a device downloading several suspicious DLL and executable (.exe) files from multiple rare external sources using the Xmlst user agent, including the executable ‘Eppzjtedzmk[.]exe’.  Analyzing this file using open-source intelligence (OSINT) suggests this is a Quasar payload, potentially indicating this represented the initial infection through DLL sideloading [3].

Interestingly, the Xmlst user agent used to download the Quasar payload has also been associated with Raccoon Stealer, an information-stealing malware that also acts as a dropper for other malware strains [4][5]. The co-occurrence of different malware components is increasingly common across the threat landscape as MaaS operating models increases in popularity, allowing attackers to employ cross-functional components from different strains.

Figure 1: Cyber AI Analyst Incident summarizing the multiple different downloads in one related incident, with technical details for the Quasar payload included. The incident event for Suspicious File Download is also linked to Possible HTTP Command and Control, suggesting escalation of activity following the initial infection.  

Quasar Establishing C2 Communication

During this phase, devices on multiple customer networks were identified making unusual external connections to the IP 193.142.146[.]212, which was not commonly seen in their networks. Darktrace analyzed the meta-properties of these SSL connections without needing to decrypt the content, to alert the usage of an unusual port not typically associated with the SSL protocol, 4782, and the usage of self-signed certificates.  Self-signed certificates do not provide any trust value and are commonly used in malware communications and ill-reputed web servers.  

Further analysis into these alerts using OSINT indicated that 193.142.146[.]212 is a Quasar C2 server and 4782 is the default port used by Quasar [6][7].  Expanding on the self-signed certificate within the Darktrace UI (see Figure 3) reveals a certificate subject and issuer of “CN=Quasar Server CA”, which is also the default self-signed certificate compiled by Quasar [6].

Figure 2: Cyber AI Analyst Incident summarizing the repeated external connections to a rare external IP that was later associated with Quasar.
Figure 3: Device Event Log of the affected device, showing Darktrace’s analysis of the SSL Certificate associated with SSL connections to 193.142.146[.]212.

A number of insights can be drawn from analysis of the Quasar C2 endpoints detected by Darktrace across multiple affected networks, suggesting a level of interoperability in the tooling used by different threat actors. In one instance, Darktrace detected a device beaconing to the endpoint ‘bittorrents[.]duckdns[.]org’ using the aforementioned “CN=Quasar Server CA” certificate. DuckDNS is a dynamic DNS service that could be abused by attackers to redirect users from their intended endpoint to malicious infrastructure, and may be shared or reused in multiple different attacks.

Figure 4: A device’s Model Event Log, showing the Quasar Server CA SSL certificate used in connections to 41.233.139[.]145 on port 5, which resolves via passive replication to ‘bittorrents[.]duckdns[.]org’.  

The sharing of malicious infrastructure among threat actors is also evident as several OSINT sources have also associated the Quasar IP 193.142.146[.]212, detected in this campaign, with different threat types.

While 193.142.146[.]212:4782 is known to be associated with Quasar, 193.142.146[.]212:8808 and 193.142.146[.]212:6606 have been associated with AsyncRAT [11], and the same IP on port 8848 has been associated with RedLineStealer [12].  Aside from the relative ease of using already developed tooling, threat actors may prefer to use open-source malware in order to avoid attribution, making the true identity of the threat actor unclear to incident responders [1][13].  

Quasar Executing Objectives

On multiple customer deployments affected by Quasar, Darktrace detected devices using BitTorrent and performing cryptocurrency mining. While these non-compliant, and potentially malicious, activities are not necessarily specific IoCs for Quasar, they do suggest that affected devices may have had greater attack surfaces than others.

For instance, one affected device was observed initiating connections to 162.19.139[.]184, a known Minergate cryptomining endpoint, and ‘zayprostofyrim[.]zapto[.]org’, a dynamic DNS endpoint linked to the Quasar Botnet by multiple OSINT vendors [9].

Figure 5: A Darktrace DETECT Event Log showing simultaneous connections to a Quasar endpoint and a cryptomining endpoint 162.19.139[.]184.

Not only does cryptocurrency mining use a significant amount of processing power, potentially disrupting an organization’s business operations and racking up high energy bills, but the software used for this mining is often written to a poor standard, thus increasing the attack surfaces of devices using them. In this instance, Quasar may have been introduced as a secondary payload from a user or attacker-initiated download of cryptocurrency mining malware.

Similarly, it is not uncommon for malicious actors to attach malware to torrented files and there were a number of examples of Darktrace detect identifying non-compliant activity, like BitTorrent connections, overlapping with connections to external locations associated with Quasar. It is therefore important for organizations to establish and enforce technical and policy controls for acceptable use on corporate devices, particularly when remote working introduces new risks.  

Figure 6: A device’s Event Log filtered by Model Breaches, showing a device connecting to BitTorrent shortly before making new or repeated connections to unusual endpoints, which were subsequently associated to Quasar.

In some cases observed by Darktrace, devices affected by Quasar were also being used to perform data exfiltration. Analysis of a period of unusual external connections to the aforementioned Quasar C2 botnet server, ‘zayprostofyrim[.]zapto[.]org’, revealed a small data upload, which may have represented the exfiltration of some data to attacker infrastructure.

Darktrace’s Autonomous Response to Quasar Attacks

On customer networks that had Darktrace RESPOND™ enabled in autonomous response mode, the threat of Quasar was mitigated and contained as soon as it was identified by DETECT. If RESPOND is not configured to respond autonomously, these actions would instead be advisory, pending manual application by the customer’s security team.

For example, following the detection of devices downloading malicious DLL and executable files, Darktrace RESPOND advised the customer to block specific connections to the relevant IP addresses and ports. However, as the device was seen attempting to download further files from other locations, RESPOND also suggested enforced a ‘pattern of life’ on the device, meaning it was only permitted to make connections that were part its normal behavior. By imposing a pattern of life, Darktrace RESPOND ensures that a device cannot perform suspicious behavior, while not disrupting any legitimate business activity.

Had RESPOND been configured to act autonomously, these mitigative actions would have been applied without any input from the customer’s security team and the Quasar compromise would have been contained in the first instance.

Figure 7: The advisory actions Darktrace RESPOND initiated to block specific connections to a malicious IP and to enforce the device’s normal patterns of life in response to the different anomalies detected on the device.

In another case, one customer affected by Quasar did have enabled RESPOND to take autonomous action, whilst also integrating it with a firewall. Here, following the detection of a device connecting to a known Quasar IP address, RESPOND initially blocked it from making connections to the IP via the customer’s firewall. However, as the device continued to perform suspicious activity after this, RESPOND escalated its response by blocking all outgoing connections from the device, effectively preventing any C2 activity or downloads.

Figure 8: RESPOND actions triggered to action via integrated firewall and TCP Resets.

Schlussfolgerung

When faced with a threat like Quasar that utilizes the infrastructure and tools of both legitimate services and other malicious malware variants, it is essential for security teams to move beyond relying on existing knowledge of attack techniques when safeguarding their network. It is no longer enough for organizations to rely on past attacks to defend against the attacks of tomorrow.

Crucially, Darktrace’s unique approach to threat detection focusses on the anomaly, rather than relying on a static list of IoCs or "known bads” based on outdated threat intelligence. In the case of Quasar, alternative or future strains of the malware that utilize different IoCs and TTPs would still be identified by Darktrace as anomalous and immediately alerted.

By learning the ‘normal’ for devices on a customer’s network, Darktrace DETECT can recognize the subtle deviations in a device’s behavior that could indicate an ongoing compromise. Darktrace RESPOND is subsequently able to follow this up with swift and targeted actions to contain the attack and prevent it from escalating further.

Credit to Nicole Wong, Cyber Analyst, Vivek Rajan Cyber Analyst

Appendices

Darktrace DETECT Model Breaches

  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Rare External SSL Self-Signed
  • Compromise / New or Repeated to Unusual SSL Port
  • Compromise / Beaconing Activity To External Rare
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Large Number of Suspicious Failed Connections
  • Unusual Activity / Unusual External Activity

List of IoCs

IP:Port

193.142.146[.]212:4782 -Quasar C2 IP and default port

77.34.128[.]25: 8080 - Quasar C2 IP

Domain

zayprostofyrim[.]zapto[.]org - Quasar C2 Botnet Endpoint

bittorrents[.]duckdns[.]org - Possible Quasar C2 endpoint

Certificate

CN=Quasar Server CA - Default certificate used by Quasar

Executable

Eppzjtedzmk[.]exe - Quasar executable

IP Address

95.214.24[.]244 - Quasar C2 IP

162.19.139[.]184 - Cryptocurrency Miner IP

41.233.139[.]145[VR1] [NW2] - Possible Quasar C2 IP

MITRE ATT&CK Mapping

Command and Control

T1090.002: External Proxy

T1071.001: Web Protocols

T1571: Non-Standard Port

T1001: Data Obfuscation

T1573: Encrypted Channel

T1071: Application Layer Protocol

Resource Development

T1584: Compromise Infrastructure

References

[1] https://thehackernews.com/2023/10/quasar-rat-leverages-dll-side-loading.html

[2] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/cicada-apt10-japan-espionage

[3]https://www.virustotal.com/gui/file/bd275a1f97d1691e394d81dd402c11aaa88cc8e723df7a6aaf57791fa6a6cdfa/community

[4] https://twitter.com/g0njxa/status/1691826188581298389

[5] https://www.linkedin.com/posts/grjk83_raccoon-stealer-announce-return-after-hiatus-activity-7097906612580802560-1aj9

[6] https://community.netwitness.com/t5/netwitness-community-blog/using-rsa-netwitness-to-detect-quasarrat/ba-p/518952

[7] https://www.cisa.gov/news-events/analysis-reports/ar18-352a

[8]https://any.run/report/6cf1314c130a41c977aafce4585a144762d3fb65f8fe493e836796b989b002cb/7ac94b56-7551-4434-8e4f-c928c57327ff

[9] https://threatfox.abuse.ch/ioc/891454/

[10] https://www.virustotal.com/gui/ip-address/41.233.139.145/relations

[11] https://raw.githubusercontent.com/stamparm/maltrail/master/trails/static/malware/asyncrat.txt

[12] https://sslbl.abuse.ch/ssl-certificates/signature/RedLineStealer/

[13] https://www.botconf.eu/botconf-presentation-or-article/hunting-the-quasar-family-how-to-hunt-a-malware-family/

Continue reading
About the author
Nicole Wong
Cyber Security Analyst

Blog

Keine Artikel gefunden.

Attack Trends: VIP Impersonation Across the Business Hierarchy

Standard-BlogbildStandard-Blogbild
22
Feb 2024

What is VIP impersonation?

VIP impersonation involves a threat actor impersonating a trusted, prominent figure at an organization in an attempt to solicit sensitive information from an employee.

VIP impersonation is a high-priority issue for security teams, but it can be difficult to assess the exact risks, and whether those are more critical than other types of compromise. Looking across a range of Darktrace/Email™ customer deployments, this blog explores the patterns of individuals targeted for impersonation and evaluates if these target priorities correspond with security teams' focus on protecting attack pathways to critical assets.

How do security teams stop VIP Impersonation?

Protecting VIP entities within an organization has long been a traditional focus for security teams. The assumption is that VIPs, due to their prominence, possess the greatest access to critical assets, making them prime targets for cyber threats.  

Email remains the predominant vector for attacks, with over 90% of breaches originating from malicious emails. However, the dynamics of email-based attacks are shifting, as the widespread use of generative AI is lowering the barrier to entry by allowing adversaries to create hyper-realistic emails with minimal errors.

Given these developments, it's worth asking the question – which entities (VIP/non-VIP) are most targeted by threat actors via email? And, more importantly – which entities (VIP/non-VIP) are more valuable if they are successfully compromised?

There are two types of VIPs:  

1. When referring to emails and phishing, VIPs are the users in an organization who are well known publicly.  

2. When referring to attack paths, VIPs are users in an organization that are known publicly and have access to highly privileged assets.  

Not every prominent user has access to critical assets, and not every user that has access to critical assets is prominent.  

Darktrace analysis of VIP impersonation

We analyzed patterns of attack pathways and phishing attempts across 20 customer deployments from a large, randomized pool encompassing a diverse range of organizations.  

Understanding Attack Pathways

Our observations revealed that 57% of low-difficulty attack paths originated from VIP entities, while 43% of observed low-difficulty attack paths towards critical assets or entities began through non-VIP users. This means that targeting VIPs is not the only way attackers can reach critical assets, and that non-VIP users must be considered as well.  

While the sample size prevents us from establishing statistical significance across all customers, the randomized selection lends credence to the generalizability of these findings to other environments.

Phishing Attempts  

On average, 1.35% of total emails sent to these customers exhibited significantly malicious properties associated with phishing or some form of impersonation. Strikingly, nearly half of these malicious emails (49.6%) were directed towards VIPs, while the rest were sent to non-VIPs. This near-equal split is worth noting, as attack paths show that non-VIPs also serve as potential entry points for targeting critical assets.  

Darktrace/Email UI
Figure 1: A phishing email actioned by Darktrace, sent to multiple VIP and non-VIP entities

For example, a recent phishing campaign targeted multiple customers across deployments, with five out of 13 emails specifically aimed at VIP users. Darktrace/Email actioned the malicious emails by double locking the links, holding the messages, and stripping the attachments.

Given that non-VIP users receive nearly half of the phishing or impersonation emails, it underscores the critical importance for security teams to recognize their blind spots in protecting critical assets. Overlooking the potential threat originating from non-VIP entities could lead to severe consequences. For instance, if a non-VIP user falls victim to a phishing attack or gets compromised, their credentials could be exploited to move laterally within the organization, potentially reaching critical assets.

This highlights the necessity for a sophisticated security tool that can identify targeted users, without the need for extensive customization and regardless of VIP status. By deploying a solution capable of promptly responding to email threats – including solicitation, phishing attempts, and impersonation – regardless of the status of the targeted user, security teams can significantly enhance their defense postures.

Darktrace vs Traditional Email Detection Methods

Traditional rules and signatures-based detection mechanisms fall short in identifying the evolving threats we’ve observed, due to their reliance on knowledge of past attacks to categorize emails.

Secure Email Gateway (SEG) or Integrated Cloud Email Security (ICES) tools categorize emails based on previous or known attacks, operating on a known-good or known-bad model. Even if tools use AI to automate this process, the approach is still fundamentally looking to the past and therefore vulnerable to unknown and zero-day threats.  

Darktrace uses AI to understand each unique organization and how its email environment interoperates with each user and device on the network. Consequently, it is able to identify the subtle deviations from normal behavior that qualify as suspicious. This approach goes beyond simplistic categorizations, considering factors such as the sender’s history and recipient’s exposure score.  

This nuanced analysis enables Darktrace to differentiate between genuine communications and malicious impersonation attempts. It automatically understands who is a VIP, without the need for manual input, and will action more strongly on incoming malicious emails  based on a user’s status.

Email does determine who is a VIP, without a need of manual input, and will action more strongly on incoming malicious emails.

Darktrace/Email also feeds into Darktrace’s preventative security tools, giving the interconnected AI engines further context for assessing the high-value targets and pathways to vital internal systems and assets that start via the inbox.

Leveraging AI for Enhanced Protection Across the Enterprise  

The efficacy of AI-driven security solutions lies in their ability to make informed decisions and recommendations based on real-time business data. By leveraging this data, AI driven solutions can identify exploitable attack pathways and an organizations most critical assets. Darktrace uniquely uses several forms of AI to equip security teams with the insights needed to make informed decisions about which pathways to secure, reducing human bias around the importance of protecting VIPs.

With the emergence of tools like AutoGPT, identifying potential targets for phishing attacks has become increasingly simplified. However, the real challenge lies in gaining a comprehensive understanding of all possible and low-difficulty attack paths leading to critical assets and identities within the organization.

At the same time, organizations need email tools that can leverage the understanding of users to prevent email threats from succeeding in the first instance. For every email and user, Darktrace/Email takes into consideration changes in behavior from the sender, recipient, content, and language, and many other factors.

Integrating Darktrace/Email with Darktrace’s attack path modeling capabilities enables comprehensive threat contextualization and facilitates a deeper understanding of attack pathways. This holistic approach ensures that all potential vulnerabilities, irrespective of the user's status, are addressed, strengthening the overall security posture.  

Schlussfolgerung

Contrary to conventional wisdom, our analysis suggests that the distinction between VIPs and non-VIPs in terms of susceptibility to impersonation and low-difficulty attack paths is not as pronounced as presumed. Therefore, security teams must adopt a proactive stance in safeguarding all pathways, rather than solely focusing on VIPs.  

Attack path modeling enhances Darktrace/Email's capabilities by providing crucial metrics on potential impact, damage, exposure, and weakness, enabling more targeted and effective threat mitigation strategies. For example, stronger email actions can be enforced for users who are known to have a high potential impact in case of compromise. 

In an era where cyber threats continue to evolve in complexity, an adaptive and non-siloed approach to securing inboxes, high-priority individuals, and critical assets is indispensable.  

Continue reading
About the author
Kendra Gonzalez Duran
Director of Technology Innovation

Gute Nachrichten für Ihr Unternehmen.
Schlechte Nachrichten für die Bösewichte.

Starten Sie Ihren kostenlosen Test

Starten Sie Ihren kostenlosen Test

Flexible Lieferung
Cloud-based deployment.
Schnelle Installation
Nur 1 Stunde für die Einrichtung - und noch weniger für eine Testversion der E-Mail-Sicherheit.
Wählen Sie Ihre Reise
Testen Sie selbstlernende KI dort, wo Sie sie am meisten brauchen - in der Cloud, im Netzwerk oder für E-Mail.
Keine Verpflichtung
Voller Zugriff auf den Darktrace Threat Visualizer und drei maßgeschneiderte Bedrohungsberichte, ohne Kaufverpflichtung.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Huch! Beim Absenden des Formulars ist etwas schief gelaufen.

Demo anfordern

Flexible Lieferung
Sie können es entweder virtuell oder mit Hardware installieren.
Schnelle Installation
Nur 1 Stunde für die Einrichtung - und noch weniger für eine Testversion der E-Mail-Sicherheit.
Wählen Sie Ihre Reise
Testen Sie selbstlernende KI dort, wo Sie sie am meisten brauchen - in der Cloud, im Netzwerk oder für E-Mail.
Keine Verpflichtung
Voller Zugriff auf den Darktrace Threat Visualizer und drei maßgeschneiderte Bedrohungsberichte, ohne Kaufverpflichtung.
Vielen Dank! Ihre Anfrage ist eingegangen!
Huch! Beim Absenden des Formulars ist etwas schief gelaufen.