Blog

Funde von Bedrohungen

Ransomware

Einblicke in das SOC-Team

Conti Ransomware Group Finds New Double Extortion Avenues

Standard-BlogbildStandard-BlogbildStandard-BlogbildStandard-BlogbildStandard-BlogbildStandard-Blogbild
07
Dezember 2021
07
Dezember 2021
Discover how Darktrace was able to detect one of Conti Ransomware Groups crippling double extortion attacks at its earliest stages. Learn more now!

In a previous blog, we outlined how the Ryuk ransomware strain developed by Russian hacking group ‘Wizard Spider’ has fallen into the hands of small-time cyber criminals.

Wizard Spider – who allegedly operate with support from the Russian government and remain under investigation by the FBI and Interpol – adopted Ryuk ransomware’s successor ‘Conti’ in 2020. Conti affects all Windows operating systems and has been involved in more than 400 incidents. Wizard Spider were soon rebranded in cyber press as the ‘Conti Ransomware Gang’, though the group does not necessarily see itself as a ‘gang’. It prefers to present itself as a business.

The ransomware bubble

Ransomware has become a multibillion-dollar industry – and the Conti Ransomware Gang reportedly made up 15% of it in 2020. With this scale of income, groups like Conti find themselves adopting some crude imitations of legitimate business practice. This corporate mimicry dictates that their victims be called ‘customers’, their extortion attempts ‘negotiations’ and their criminal peers ‘affiliates’. They even publish ‘press releases’ via a dedicated Dark Web site.

The gang’s Ransomware-as-a-Service ‘business model’ consists of employing affiliates, training them in Conti ransomware’s deployment and management, and then taking 30% of the profits themselves. With exact profits known only to the malware writers and not the affiliates, however, the percentage Conti takes is often much higher than the 30% they claim.

There may not be checks and regulations in place to address fraud in the cyber underworld, but one business complication which Conti have not been able to escape is that of the disgruntled employee.

Unhappy with the malpractice of their superiors, an underpaid affiliate leaked the Conti Ransomware Gang’s training materials and the IP addresses for their Cobalt Strike C2 servers in August 2021, declaring, “they recruit suckers and divide the money among themselves”.

Meanwhile, the US Government has also been taking action to try to disrupt the profit margins of groups like the Conti Ransomware Gang, going as far as to impose sanctions on cryptocurrency exchanges seen as facilitating ransomware transactions. However, leaks and legislation have proved far from fatal for Conti.

The reality is that these actions have not lost the Conti Ransomware Gang any of its so-called “customers”, and where there are customers there is profit. Any individual or organization entrusting their cyber security to conventional, rules-based measures is in their target market.

Darktrace’s AI recently detected a Conti attack conducted along the lines of one of the methods outlined in the August leak. The target organization – a US transportation company – was trialing Darktrace but, without Darktrace’s Autonomous Response set in active mode, the attack was allowed to go ahead. In examining how it progressed, however, it should become clear not only how threatening double extortion ransomware attacks like this one can be, but also how effectively they can be stopped by Darktrace at each stage of the attack.

Abbildung 1: Zeitlicher Ablauf des Angriffs

Conti Ransomware Gang diversifies the ransomware playbook

A single uninstalled Microsoft patch had left the target organization with dangerous ProxyShell vulnerabilities. Conti exploited these vulnerabilities, quickly gaining the rights to remotely execute Exchange PowerShell commands on the company’s server and steadily broadened its presence within the digital environment. This is a relatively new approach for the Conti Ransomware Gang, who previously relied upon phishing attacks and firewall exploits. By diversifying its approach, it stays ahead of patches and intelligence.

Two weeks after the initial breach, C2 connections were made to an unusual endpoint located in Finland using an SSL client which appeared innocuous but was 100% rare for the organization. Had Autonomous Response been set in active mode, Darktrace would have shut the connections down at this very early stage.

The IP address of this suspicious endpoint has since been identified as a Conti IoC (Indicator of Compromise), allowing it to be incorporated into rules-based security solutions. This would have done little good for the company in question, however, which was breached weeks before this intelligence was made available.

As Conti continued to conduct internal reconnaissance and move laterally through the company’s digital environment, Darktrace detected further unusual activity. The suspicious Finnish endpoint then employed new ‘Living off the Land’ techniques, installing the usually legitimate tools AnyDesk and Cobalt Strike onto various parts of the environment.

A series of SSL connections were made to AnyDesk endpoints and external hosts, one of which lasted 95 hours, indicating an active remote session conducted by one of Conti’s affiliates. At this stage, Darktrace had 10 distinct reasons to suspect an imminent attack.

Conti News: Closing the deal with double extortion ransomware

Double extortion has become the Conti Ransomware Gang’s new favourite sales tactic. If you refuse to pay its ransom, Conti will not only take your most important files from you, but also exfiltrate and publish them using its dedicated ‘Conti News’ website, or sell them directly to your competitors.

Having expanded their reach across the transport company’s network, the Conti affiliate began rapidly exfiltrating large quantities of company data to Conti’s preferred cloud storage site, MEGA. Over four days, more than 3TB of data was uploaded, and then encrypted.

To avoid detection by a human security team, encryption was launched at close to midnight – Conti’s ‘business’ does not respect business hours. When the company’s security team returned to work the next day, they were met with a ransom note.

This attack was able to progress because Darktrace was only being trialed at this stage and was therefore allowed to detect threats but not to take action against them. With Autonomous Response employed in active mode, this ransomware attack would have ended in the very early stages, when Darktrace detected its first suspicious connections.

Nonetheless, the Cyber AI Analyst was able to investigate and connect the dots of the attack automatically, making the organization’s remediation efforts drastically quicker and easier than they would have been without even this partial Darktrace deployment.

Figure 2: Cyber AI Analyst generated this incident report following the initiation of data exfiltration

How the Conti Ransomware Gang evades cyber intelligence

Security systems that rely on human intelligence to detect threats fit Conti’s ideal customer profile perfectly. By adapting and diversifying their approach, moving from Ryuk to Conti, and from spear phishing and firewall exploits to this new ProxyShell approach, Conti stay ahead of regulations and hold on to their vulnerable customer base.

Even if the Conti Ransomware Gang is brought down by leaks or legislation, other groups will rise to fill the gap in the market, eager for their own cut of the illicit gains. If these groups are to be truly stopped, they must be made unprofitable.

The US government has tried to do this by imposing fines upon ransom payers, but companies still often consider the losses involved in not recovering their data too great. As I have argued previously, ‘to pay or not to pay,’ is not the question we should be asking.

If you’re deciding whether to pay or not to pay, you’re already too far down the line. Darktrace stops groups like Conti at the first encounter. As this case has shown, Darktrace’s Self-Learning AI is able to identify threats weeks before human analysts and threat intelligence can do the same, and neutralize them at every stage of an attack with Autonomous Response.

Thanks to Darktrace analyst Sam Lister for his insights on the above threat find.

Darktrace Modell-Erkennungen:

  • Device / Long Agent Connection to New Endpoint
  • Device / ICMP Address Scan
  • Anomalous Connection / SMB Enumeration
  • Anomalous Server Activity / Outgoing from Server
  • Compromise / Beacon to Young Endpoint
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Fast Beaconing to DGA
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Beacon for 4 Days
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / Suspicious Read Write Ratio
  • Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
  • Anomalous Connection / Sustained MIME Type Conversion
  • Unusual Activity / Anomalous SMB Move & Write
  • Unusual Activity / Unusual Internal Data Volume as Client or Server
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Compromise / Ransomware / Suspicious SMB Activity
  • Anomalous File / Internal / Unusual SMB Script Write
  • Anomalous File / Internal / Masqueraded Executable SMB Write
  • Device / SMB Lateral Movement
  • Device / Multiple Lateral Movement Model Breaches

EINBLICKE IN DAS SOC-Team
Darktrace Cyber-Analysten sind erstklassige Experten für Threat Intelligence, Threat Hunting und Incident Response. Sie bieten Tausenden von Darktrace Kunden auf der ganzen Welt rund um die Uhr SOC-Support. Einblicke in das SOC-Team wird ausschließlich von diesen Experten verfasst und bietet Analysen von Cyber-Vorfällen und Bedrohungstrends, die auf praktischen Erfahrungen in diesem Bereich basieren.
AUTOR
ÜBER DEN AUTOR
Justin Fier
SVP, Red Team Operations

Justin is one of the US’s leading cyber intelligence experts, and holds the position of SVP, Red Team Operations at Darktrace. His insights on cyber security and artificial intelligence have been widely reported in leading media outlets, including the Wall Street Journal, CNN, The Washington Post, and VICELAND. With over 10 years’ experience in cyber defense, Justin has supported various elements in the US intelligence community, holding mission-critical security roles with Lockheed Martin, Northrop Grumman Mission Systems and Abraxas. Justin is also a highly-skilled technical specialist, and works with Darktrace’s strategic global customers on threat analysis, defensive cyber operations, protecting IoT, and machine learning.

Book a 1-1 meeting with one of our experts
share this article
COre-Abdeckung
Keine Artikel gefunden.

More in this series

Keine Artikel gefunden.

Blog

Einblicke in das SOC-Team

Lost in Translation: Darktrace Blocks Non-English Phishing Campaign Concealing Hidden Payloads

Standard-BlogbildStandard-Blogbild
15
May 2024

Email – the vector of choice for threat actors

In times of unprecedented globalization and internationalization, the enormous number of emails sent and received by organizations every day has opened the door for threat actors looking to gain unauthorized access to target networks.

Now, increasingly global organizations not only need to safeguard their email environments against phishing campaigns targeting their employees in their own language, but they also need to be able to detect malicious emails sent in foreign languages too [1].

Why are non-English language phishing emails more popular?

Many traditional email security vendors rely on pre-trained English language models which, while function adequately against malicious emails composed in English, would struggle in the face of emails composed in other languages. It should, therefore, come as no surprise that this limitation is becoming increasingly taken advantage of by attackers.  

Darktrace/Email™, on the other hand, focuses on behavioral analysis and its Self-Learning AI understands what is considered ‘normal’ for every user within an organization’s email environment, bypassing any limitations that would come from relying on language-trained models [1].

In March 2024, Darktrace observed anomalous emails on a customer’s network that were sent from email addresses belonging to an international fast-food chain. Despite this seeming legitimacy, Darktrace promptly identified them as phishing emails that contained malicious payloads, preventing a potentially disruptive network compromise.

Attack Overview and Darktrace Coverage

On March 3, 2024, Darktrace observed one of the customer’s employees receiving an email which would turn out to be the first of more than 50 malicious emails sent by attackers over the course of three days.

The Sender

Darktrace/Email immediately understood that the sender never had any previous correspondence with the organization or its employees, and therefore treated the emails with caution from the onset. Not only was Darktrace able to detect this new sender, but it also identified that the emails had been sent from a domain located in China and contained an attachment with a Chinese file name.

The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.
Figure 1: The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.

Darktrace further detected that the phishing emails had been sent in a synchronized fashion between March 3 and March 5. Eight unique senders were observed sending a total of 55 emails to 55 separate recipients within the customer’s email environment. The format of the addresses used to send these suspicious emails was “12345@fastflavor-shack[.]cn”*. The domain “fastflavor-shack[.]cn” is the legitimate domain of the Chinese division of an international fast-food company, and the numerical username contained five numbers, with the final three digits changing which likely represented different stores.

*(To maintain anonymity, the pseudonym “Fast Flavor Shack” and its fictitious domain, “fastflavor-shack[.]cn”, have been used in this blog to represent the actual fast-food company and the domains identified by Darktrace throughout this incident.)

The use of legitimate domains for malicious activities become commonplace in recent years, with attackers attempting to leverage the trust endpoint users have for reputable organizations or services, in order to achieve their nefarious goals. One similar example was observed when Darktrace detected an attacker attempting to carry out a phishing attack using the cloud storage service Dropbox.

As these emails were sent from a legitimate domain associated with a trusted organization and seemed to be coming from the correct connection source, they were verified by Sender Policy Framework (SPF) and were able to evade the customer’s native email security measures. Darktrace/Email; however, recognized that these emails were actually sent from a user located in Singapore, not China.

Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.
Figure 2: Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.

The Emails

Darktrace/Email autonomously analyzed the suspicious emails and identified that they were likely phishing emails containing a malicious multistage payload.

Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.
Figure 3: Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.

There has been a significant increase in multistage payload attacks in recent years, whereby a malicious email attempts to elicit recipients to follow a series of steps, such as clicking a link or scanning a QR code, before delivering a malicious payload or attempting to harvest credentials [2].

In this case, the malicious actor had embedded a suspicious link into a QR code inside a Microsoft Word document which was then attached to the email in order to direct targets to a malicious domain. While this attempt to utilize a malicious QR code may have bypassed traditional email security tools that do not scan for QR codes, Darktrace was able to identify the presence of the QR code and scan its destination, revealing it to be a suspicious domain that had never previously been seen on the network, “sssafjeuihiolsw[.]bond”.

Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.
Figure 4: Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.

At the time of the attack, there was no open-source intelligence (OSINT) on the domain in question as it had only been registered earlier the same day. This is significant as newly registered domains are typically much more likely to bypass gateways until traditional security tools have enough intelligence to determine that these domains are malicious, by which point a malicious actor may likely have already gained access to internal systems [4]. Despite this, Darktrace’s Self-Learning AI enabled it to recognize the activity surrounding these unusual emails as suspicious and indicative of a malicious phishing campaign, without needing to rely on existing threat intelligence.

The most commonly used sender name line for the observed phishing emails was “财务部”, meaning “finance department”, and Darktrace observed subject lines including “The document has been delivered”, “Income Tax Return Notice” and “The file has been released”, all written in Chinese.  The emails also contained an attachment named “通知文件.docx” (“Notification document”), further indicating that they had been crafted to pass for emails related to financial transaction documents.

 Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.
Figure 5: Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.

Schlussfolgerung

Although this phishing attack was ultimately thwarted by Darktrace/Email, it serves to demonstrate the potential risks of relying on solely language-trained models to detect suspicious email activity. Darktrace’s behavioral and contextual learning-based detection ensures that any deviations in expected email activity, be that a new sender, unusual locations or unexpected attachments or link, are promptly identified and actioned to disrupt the attacks at the earliest opportunity.

In this example, attackers attempted to use non-English language phishing emails containing a multistage payload hidden behind a QR code. As traditional email security measures typically rely on pre-trained language models or the signature-based detection of blacklisted senders or known malicious endpoints, this multistage approach would likely bypass native protection.  

Darktrace/Email, meanwhile, is able to autonomously scan attachments and detect QR codes within them, whilst also identifying the embedded links. This ensured that the customer’s email environment was protected against this phishing threat, preventing potential financial and reputation damage.

Credit to: Rajendra Rushanth, Cyber Analyst, Steven Haworth, Head of Threat Modelling, Email

Appendices  

List of Indicators of Compromise (IoCs)  

IoC – Type – Description

sssafjeuihiolsw[.]bond – Domain Name – Suspicious Link Domain

通知文件.docx – File - Payload  

References

[1] https://darktrace.com/blog/stopping-phishing-attacks-in-enter-language  

[2] https://darktrace.com/blog/attacks-are-getting-personal

[3] https://darktrace.com/blog/phishing-with-qr-codes-how-darktrace-detected-and-blocked-the-bait

[4] https://darktrace.com/blog/the-domain-game-how-email-attackers-are-buying-their-way-into-inboxes

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst

Blog

Keine Artikel gefunden.

The State of AI in Cybersecurity: The Impact of AI on Cybersecurity Solutions

Standard-BlogbildStandard-Blogbild
13
May 2024

About the AI Cybersecurity Report

Darktrace surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog continues the conversation from “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on cybersecurity solutions.

To access the full report, click here.

The effects of AI on cybersecurity solutions

Overwhelming alert volumes, high false positive rates, and endlessly innovative threat actors keep security teams scrambling. Defenders have been forced to take a reactive approach, struggling to keep pace with an ever-evolving threat landscape. It is hard to find time to address long-term objectives or revamp operational processes when you are always engaged in hand-to-hand combat.                  

The impact of AI on the threat landscape will soon make yesterday’s approaches untenable. Cybersecurity vendors are racing to capitalize on buyer interest in AI by supplying solutions that promise to meet the need. But not all AI is created equal, and not all these solutions live up to the widespread hype.  

Do security professionals believe AI will impact their security operations?

Yes! 95% of cybersecurity professionals agree that AI-powered solutions will level up their organization’s defenses.                                                                

Not only is there strong agreement about the ability of AI-powered cybersecurity solutions to improve the speed and efficiency of prevention, detection, response, and recovery, but that agreement is nearly universal, with more than 95% alignment.

This AI-powered future is about much more than generative AI. While generative AI can help accelerate the data retrieval process within threat detection, create quick incident summaries, automate low-level tasks in security operations, and simulate phishing emails and other attack tactics, most of these use cases were ranked lower in their impact to security operations by survey participants.

There are many other types of AI, which can be applied to many other use cases:

Supervised machine learning: Applied more often than any other type of AI in cybersecurity. Trained on attack patterns and historical threat intelligence to recognize known attacks.

Natural language processing (NLP): Applies computational techniques to process and understand human language. It can be used in threat intelligence, incident investigation, and summarization.

Large language models (LLMs): Used in generative AI tools, this type of AI applies deep learning models trained on massively large data sets to understand, summarize, and generate new content. The integrity of the output depends upon the quality of the data on which the AI was trained.

Unsupervised machine learning: Continuously learns from raw, unstructured data to identify deviations that represent true anomalies. With the correct models, this AI can use anomaly-based detections to identify all kinds of cyber-attacks, including entirely unknown and novel ones.

What are the areas of cybersecurity AI will impact the most?

Improving threat detection is the #1 area within cybersecurity where AI is expected to have an impact.                                                                                  

The most frequent response to this question, improving threat detection capabilities in general, was top ranked by slightly more than half (57%) of respondents. This suggests security professionals hope that AI will rapidly analyze enormous numbers of validated threats within huge volumes of fast-flowing events and signals. And that it will ultimately prove a boon to front-line security analysts. They are not wrong.

Identifying exploitable vulnerabilities (mentioned by 50% of respondents) is also important. Strengthening vulnerability management by applying AI to continuously monitor the exposed attack surface for risks and high-impact vulnerabilities can give defenders an edge. If it prevents threats from ever reaching the network, AI will have a major downstream impact on incident prevalence and breach risk.

Where will defensive AI have the greatest impact on cybersecurity?

Cloud security (61%), data security (50%), and network security (46%) are the domains where defensive AI is expected to have the greatest impact.        

Respondents selected broader domains over specific technologies. In particular, they chose the areas experiencing a renaissance. Cloud is the future for most organizations,
and the effects of cloud adoption on data and networks are intertwined. All three domains are increasingly central to business operations, impacting everything everywhere.

Responses were remarkably consistent across demographics, geographies, and organization sizes, suggesting that nearly all survey participants are thinking about this similarly—that AI will likely have far-reaching applications across the broadest fields, as well as fewer, more specific applications within narrower categories.

Going forward, it will be paramount for organizations to augment their cloud and SaaS security with AI-powered anomaly detection, as threat actors sharpen their focus on these targets.

How will security teams stop AI-powered threats?            

Most security stakeholders (71%) are confident that AI-powered security solutions are better able to block AI-powered threats than traditional tools.

There is strong agreement that AI-powered solutions will be better at stopping AI-powered threats (71% of respondents are confident in this), and there’s also agreement (66%) that AI-powered solutions will be able to do so automatically. This implies significant faith in the ability of AI to detect threats both precisely and accurately, and also orchestrate the correct response actions.

There is also a high degree of confidence in the ability of security teams to implement and operate AI-powered solutions, with only 30% of respondents expressing doubt. This bodes well for the acceptance of AI-powered solutions, with stakeholders saying they’re prepared for the shift.

On the one hand, it is positive that cybersecurity stakeholders are beginning to understand the terms of this contest—that is, that only AI can be used to fight AI. On the other hand, there are persistent misunderstandings about what AI is, what it can do, and why choosing the right type of AI is so important. Only when those popular misconceptions have become far less widespread can our industry advance its effectiveness.  

To access the full report, click here.

Continue reading
About the author
The Darktrace Community
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Starten Sie Ihren kostenlosen Test
Darktrace AI protecting a business from cyber threats.